已知函数f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<π/2)的图像与x轴的交点中,相邻两个 10

已知函数f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<π/2)的图像与x轴的交点中,相邻两个点之间的距离为π/2,且图像上一个最低点为M(2π/3,... 已知函数f(x)=Asin(wx+φ),x∈R(其中A>0,w>0,0<φ<π/2)的图像与x轴的交点中,相邻两个点之间的距离为π/2,且图像上一个最低点为M(2π/3,-2)
①求f(x)的解析式
②当x∈π/12,π/2,求f(x)的值域
展开
诺minyu
2012-04-25 · TA获得超过1284个赞
知道小有建树答主
回答量:478
采纳率:0%
帮助的人:200万
展开全部
解:(1)由最低点为M(2π3,-2)得A=2.
由x轴上相邻的两个交点之间的距离为π2得T2=π2,
即T=π,ω=2πT=2ππ=2
由点M(2π3,-2)在图象上的2sin(2×2π3+φ)=-2,即sin(4π3+φ)=-1
故4π3+φ=2kπ-π2,k∈Z∴φ=2kπ-11π6
又φ∈(0,π2),∴φ=π6,故f(x)=2sin(2x+π6)
(2)∵x∈[π12,π2],∴2x+π6∈[π3,7π6]
当2x+π6=π2,即x=π6时,f(x)取得最大值2;当2x+π6=7π6
即x=π2时,f(x)取得最小值-1,
故f(x)的值域为[-1,2]
tailorlove
2012-04-22
知道答主
回答量:18
采纳率:0%
帮助的人:9.9万
展开全部
1)因为相邻的两个交点之间的距离为π/2,所以
周期T=π/2*2=π
从而ω=2
又图像上一个最低点为M(2π/3,-2)
有A=2
即f(x)=2sin(2x+φ)过M(2π/3,-2),
所以-2=2sin(2*2π/3+φ)
2*2π/3+φ=3/2π
φ=π/6,所以 f(x)的解析式
f(x)=2sin(2x+π/6)
(2)当x∈[π/12,π/2],
根据图象可知
2x+π/6=π/2时取最大值2(此时x=π/6可以)
x=π/2时取最小值-1
所以f(x)的值域为[-1,2]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
巢戎R9
2012-04-02
知道答主
回答量:6
采纳率:0%
帮助的人:9400
展开全部
因为最低点为M(2π/3,-2)
所以A=2
由(T/2)=π/2 得T=π ( 2π)/W =π 得W=2
f(x)=2sin(2x+φ),再把M(2π/3,-2)带入
求出φ=2Kπ+π/6 因为,0<φ<π/2 所以φ=π/6
f(x)=2sin(2x+π/6)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
通过大计二
2012-03-26
知道答主
回答量:13
采纳率:0%
帮助的人:12.4万
展开全部
最低点为M(2π/3,-2)
得A=2
(T/2)=π/2 得T=π ( 2π)/W =π 得W=2
f(x)=2sin(2x+φ),再把M(2π/3,-2)带入
求出φ=2Kπ+π/6 因为,0<φ<π/2 所以φ=π/6
f(x)=2sin(2x+π/6),
第二题带入即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式