
计算:(根号2/(1+i))^100+ (根号2/(1-i))^1000分
1个回答
展开全部
(1+i)^100
=[(1+i)²]^50
=(1+i²+2i)^50
=[(2i)²]^25
=-4^25
=-(2²)^25
=-2^50
(1-i)^100
=[(1-i)²]^50
=(1+i²-2i)^50
=[(-2i)²]^25
=-4^25
=-(2²)^25
=-2^50
(根号2/(1+i))^100+ (根号2/(1-i))^100
=2^50/(1+i)^100+ 2^50/(1-i)^100
=2^50/(-2^50) + 2^50/(-2^50)
=-1-1
=-2
=[(1+i)²]^50
=(1+i²+2i)^50
=[(2i)²]^25
=-4^25
=-(2²)^25
=-2^50
(1-i)^100
=[(1-i)²]^50
=(1+i²-2i)^50
=[(-2i)²]^25
=-4^25
=-(2²)^25
=-2^50
(根号2/(1+i))^100+ (根号2/(1-i))^100
=2^50/(1+i)^100+ 2^50/(1-i)^100
=2^50/(-2^50) + 2^50/(-2^50)
=-1-1
=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询