卷积怎么求?

 我来答
白露饮尘霜17
2022-10-31 · TA获得超过1.3万个赞
知道大有可为答主
回答量:6955
采纳率:100%
帮助的人:39.2万
展开全部
问题一:什么是卷积?要怎么求两个函数的卷积? 15分 简介
褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。
2基本内涵
简单定义:卷积是分析数学中一种重要的运算。
设:f(x),g(x)是R1上的两个可积函数,作积分:
可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。
容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。
卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。
由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。
卷积的概念还可以推广到数列、测度以及广义函数上去。
3定义
卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果

其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
如果卷积的变量是函数x(t)和h(t),则卷积的计算变为

其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。
参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。
4性质

perfect spaces卷积混响
种卷积算子都满足下列性质:
交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。
微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。
5卷积定理
卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。
F(g(x)*f(x)) = F(g(x))F(f(x))
其中F表示的是傅里叶变换。
这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。
利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
6群上卷积
卷积与相关分析......>>

问题二:二维卷积如何运算? A=[100,100,100
100,100,100
100,100,100]
B=[1/9,1/9,1/9
1/9,1/9,1/9
1/9,1/9,1/9]
c=conv2(A,B)

问题三:两个函数的卷积怎么算 你好。
只要使用conv函数就可以了。
例子:
u=ones(1,100);
v=2*u;
w = conv(u,v);
plot(w);

问题四:什么是矩阵卷积? 没有矩阵卷积的,只有向量卷积。当然,如果你硬要把向量理解为一个1*n的矩阵,那也说的过去。
所谓两个向量卷积,说白了就是多项式乘法。
比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:
把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q的元素也作为多项式的系数按升幂排列,写出对应的多项式:1+x。
卷积就是“两个多项式相乘取系数”。
(1+2x+3x^2)×(1+x)=1+3x+5x^2+3x^3
所以p和q卷积的结果就是[1 3 5 3]。
记住,当确定是用升幂或是降幂排列后,下面也都要按这个方式排列,否则结果是不对的。
你也可以用matlab试试
p=[1 2 3]
q=[1 1]
conv(p,q)
看看和计算的结果是否相同。

问题五:怎么求两个函数的卷积? clear;
clc;close all;
x=0:0.1:12;
y=gaus *** f(x,[140 6]);
figure;
plot(x,y);
ys=trapz(x,y) %求y对x的面积
z=gaus *** f(x,[9 6]);
figure;
plot(x,z);
s=conv(y,z);
n=linspace(0,12,length(s));
ss=trapz(n,s) %求s对x的面积
sspys=ss/ys %求s面积与y面积比值
按上面语句试试

问题六:有关卷积的问题,这两个图形的卷积怎么画? 将第二个图形翻转得到红色的矩形
然后平移t个单位
(t0时,向右平移,蓝色矩形)
对t的取值分情况讨论
在与第一个图形相交的区域内求积分,得到卷积
卷积的图形为一个梯形
卷积的计算过程如下:
卷积的图像是一个梯形
草图如下:

问题七:什么是卷积?要怎么求两个函数的卷积? 15分 简介
褶积(又名卷积)和反褶积(又名去卷积)是一种积分变换的数学方法,在许多方面得到了广泛应用。用褶积解决试井解释中的问题,早就取得了很好成果;而反褶积,直到最近,Schroeter、Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。有专家认为,反褶积的应用是试井解释方法发展史上的又一次重大飞跃。他们预言,随着测试新工具和新技术的增加和应用,以及与其它专业研究成果的更紧密结合,试井在油气藏描述中的作用和重要性必将不断增大[1] 。
2基本内涵
简单定义:卷积是分析数学中一种重要的运算。
设:f(x),g(x)是R1上的两个可积函数,作积分:
可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数f与g的卷积,记为h(x)=(f*g)(x)。
容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。
卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。
由卷积得到的函数f*g一般要比f和g都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。
卷积的概念还可以推广到数列、测度以及广义函数上去。
3定义
卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果

其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
如果卷积的变量是函数x(t)和h(t),则卷积的计算变为

其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。
参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行。
4性质

perfect spaces卷积混响
种卷积算子都满足下列性质:
交换律 结合律 分配律 数乘结合律 其中a为任意实数(或复数)。
微分定理 其中Df表示f的微分,如果在离散域中则是指差分算子,包括前向差分与后向差分两种。
5卷积定理
卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。
F(g(x)*f(x)) = F(g(x))F(f(x))
其中F表示的是傅里叶变换。
这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。
利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做2n- 1组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。
6群上卷积
卷积与相关分析......>>

问题八:请问u(t)*u(t-1)卷积怎么算??? u(t)*u(t-1)=u(t)*u(t)*δ(t-1)
=tu(t)*δ(t-1)
=(t-1)u(t-1)

问题九:信号与系统---卷积是怎么回事? 楼主,我来说一下吧:
卷积是一种公式(在信号中很重要)...一般是利用这个公式来进行运算,例如:给你f1(t),f2(t)他们具体的函数,让你求f1(t),f2(t)两者的卷积是多少,只要把公式记住,把f1(t),f2(t)带入就行,再计算...(公式形式:f1(t)卷积f2(t)=∫f1(г)*f2(t-г)dг 积分从负无穷到正无穷)
卷积的实际意义:《信号与系统》中用的很多的就是:零状态响应=激励 卷积 冲击响应;有关证明楼主参考吴大正的信号与线性系统的P60的卷积积分(证明实在太多,就不写了)...

楼主若还有什么问题,再联系吧...

问题十:怎样理解卷积积分 对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。
在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)
有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。
所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。
复频域。
s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。
负的频率。
之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
希卓
2024-10-17 广告
DAS分布式振动技术是一种基于光纤传感的先进监测方案。它利用光纤作为传感器,能够实时、连续地监测沿线的各种振动信号。该技术具有高精度、长距离监测、抗干扰能力强等显著优势,特别适用于重要设施如油气管道、铁路轨道等的安全监测。通过DAS分布式振... 点击进入详情页
本回答由希卓提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式