导数是什么啊?

 我来答
帐号已注销
2022-11-25 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.7万
展开全部

函数的条件是在定义域内,必须是连续的.可导函数都是连续的,但是连续函数不一定是可导函数.

例如,y=|x|,在x=0上不可导.即使这个函数是连续的,但是lim(x趋向0+)y'=1,lim(x趋向0-)y'=-1,两个值不相等,所以不是可导函数。

也就是说在每一个点上导数的左右极限都相等的函数是可导函数,反之不是。

重根从字面意思理解-----重复相等的根,比如(x-1)²=0

x1=x2=1 即有2个重复相等的实数根,1就是重根.

k重根---重复相等k次的根,比如上面的实数根1它重复相等了2次,就叫2重根.以此类推

扩展资料:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)

如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数 [1]  。

若将一点扩展成函数f(x)在其定义域包含的某开区间I内每一个点,那么函数f(x)在开区间内可导,这时对于内每一个确定的值,都对应着f(x)的一个确定的导数,如此一来每一个导数就构成了一个新的函数,这个函数称作原函数f(x)的导函数,记作:y'或者f′(x)。

函数f(x)在它的每一个可导点x。处都对应着一个唯一确定的数值——导数值f′(x),这个对应关系给出了一个定义在f(x)全体可导点的集合上的新函数,称为函数f(x)的导函数,记为f′(x)。

导函数的定义表达式为:

值得注意的是,导数是一个数,是指函数f(x)在点x0处导函数的函数值。但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。

如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。

例如:f(x)=|x|在x=0处虽连续,但不可导(左导数-1,右导数1)

参考资料:百度百科-导函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
泡泡徐本地分徐
2024-06-03 · 高职汽车相关专业文档
泡泡徐本地分徐
采纳数:461 获赞数:1954

向TA提问 私信TA
展开全部
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数的几何意义是该函数曲线在这一点上的切线斜率。导数的另一常见解释是变化的速率,导数可以表示运动物体的瞬时速度和加速度(矢量,有方向)、也可以表示曲线在某一点的斜率(切线方向)、还可以表示量子力学中的波函数在某一点的强度变化率(量子力学中波函数表示概率)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式