计算:(1)|?3|+(?1)2011×(π?3)0?327+(12)?2(2)a-2b2(a2b-2)-3
计算:(1)|?3|+(?1)2011×(π?3)0?327+(12)?2(2)a-2b2(a2b-2)-3
(1)原式=3+(-1)×1-3+4=3;
(2)原式=a -2 b 2 ?a -6 b 6 =a -8 b 8 .
(2a+3)(2分之3b+5) (-2m-1)(3m-2) (-2x+3)2
解:原式=3ab+10a+9b/2+15
3sin^2(α)+2sin^2(β)=2sinα则cos^2(α)+cos^2(β)的取值范围
3sin^2(α)+2sin^2(β)=2sinα
sin^2(α)+(2-2cos^2(α))+(2-2cos^2(β))=2sinα
cos^2(α)+cos^2(β)=[sin^2(α)-2sinα+4]/2
设sinα=t
因为2sin^2(β)=2sinα-3sin^2(α)≥0
2t-3t^2≥0
2/3≥t≥0
cos^2(α)+cos^2(β)=[t^2-2t+4]/2
=[(t-1)^2+3]/2
对称轴为t=1
所以取最大值时t=0 cos^2(α)+cos^2(β)=2
取最小值时t=2/3 cos^2(α)+cos^2(β)=14/9
所以取值范围[14/9,2]
lim(n→无穷)[1/(n^2+1)+2/(n^2+2)+....+2n/(n^2+n)]
1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)
≤1/(n^2+1)+2/(n^2+1)+....+n/(n^2+1)
≤(n^2+n)/2(n^2+1)····(1)
1/(n^2+1)+2/(n^2+2)+....+n/(n^2+n)
≥1/(n^2+n)+2/(n^2+n)+....+n/(n^2+n)
≥(n^2+n)/2(n^2+n)
=1/2
(1)的极限为1/2 根据夹逼定理 极限为1/2
抛物线y=-2(x-1)2+2与y=-2(x+1)2+2的关系
C
y=-2(x-1)2+2 当X=1时,Y=2;当X=0时,Y=0;
y=-2(x+1)2+2 当X=-1时,Y=2;当X=0时,Y=0;
已知x+y=20,x^2+y^2=2a^2+2b^2,求x-y的值.
(x+y)^2=400 ==》2xy=400-2a^2+2b^2
(x-y)^2=2a^2+2b^2-2xy=2a^2+2b^2-400+2a^2-2b^2=4a^2-400 ===》x-y=根号4a^2-400
(x/2y)^2乘y/2x-x/y^2除2y^2/x=?
(x/2y)^2乘y/2x-x/y^2除2y^2/x=?
(x/2y)^2乘y/2x-x/y^2除2y^2/x
=(x^2/4y^2)*(y/2x)-(x/y^2)/(2y^2/x)
=x/8y-(x/y^2)*(x/2y^2)
=x/8y-x^2/2y^4
=(xy^3-4x^2)/8y^4
(a+b)^2=a^2-ab+b^2+A 求A (ma+nb)^2=4a^2+pab+9b^2 则mn-p=
(a+b)^2=a^2-ab+b^2+A 求A
(a+b)²=a²+2ab+b²=a²-ab+b²+3ab
∴A=3ab
(ma+nb)^2=4a^2+pab+9b^2 则mn-p=
∵(2a±3b)²=4a²±12ab+9b²
∴m=2 n=±3 p=±12
∴mn-p=±6±12
①=18
②=-18
已知a+b=7,ab=2,求:(1)(a-b)2;(2)a3b+2a2b2+ab3
(1)∵a+b=7,ab=2,
∴(a-b) 2 =(a+b) 2 -4ab=49-8=41;
(2)∵a+b=7,ab=2,
∴原式=ab(a 2 +2ab+b 2 )=ab(a+b) 2 =78.
已知tana2=2tanb2+1,求证 sinb2=2sina2-1
∵tan²a=2tan²b+1
∴sin²a/cos²a=2sin²b/cos²b +1
∴sin²acos²b=2sin²bcos²a+cos²acos²b
∴sin²a(1-sin²b)=2sin²b(1-sin²a)+(1-sin²a)(1-sin²b)
∴sin²a-sin²asin²b=2sin²b-2sin²asin²b+1-sin²a-sin²b+sin²asin²b
∴sin²a=sin²b+1-sin²a
∴sin²b=2sin²a-1