什么是上凸函数,什么是下凸函数?
如果定义在某一区间上的一元实函数是连续函数,且对这一区间中的任何两点X1、X2,当X1<X2时,有不等式:
其中q1、q2为正数,q1+q2=1,这时,我们把函数f(x)叫做凹函数,或叫做下凸函数。
如果把上述条件中的“≥”改成“>”,则叫做严格凹函数,或叫做严格下凸函数。如果f(x)是凹函数,那么-f(x)即是凸函数,通常都是把凹函数转化为凸函数来研究。
扩展资料:
凸函数的性质
1、定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。如果C是闭区间,那么f有可能在C的端点不连续。
2、一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。
3、一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y) > f(x) + f '(x) (y − x)。特别地,如果f '(c) = 0,那么c是f(x)的最小值。
凹函数的性质
1、如果一个可微函数f它的导数f'在某区间是单调上升的,也就是二阶导数若存在,则在此区间,二阶导数是大于零的,f就是凹的。
2、如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。
3、如果凹函数(也就是向上开口的)有一个“底”,在底的任意点就是它的极小值。如果凸函数有一个“顶点”,那么那个顶点就是函数的极大值。
参考资料来源:百度百科-凸函数
参考资料来源:百度百科-凹函数