求〔sin(x的三次方)cosx〕的不定积分

 我来答
华源网络
2022-08-02 · TA获得超过5593个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
∫sinxdx/(sinx^3+cosx^3) =∫dx/sinx^2(1+cotx^3) =-∫dcotx/(1+cotx^3) cotx=u =-∫du/(1+u^3) =(-1/6)ln|u^2-u+1|+(1/√3)arctan[(2u-1)/√3] +(1/3)ln|u+1|+C =(-1/6)ln|cotx^2-cotx+1| +(1/√3)arctan[(2cotx-1)/√3]+(1/√3ln|cotx+1|+C ∫dx/(1+x^3)=∫dx/[(1+x)(1+x^2-x)]=(1/3)∫(x+1)^2-(x^2-x+1)dx/[x(1+x)(1-x+x^2)] =(1/3)∫(x+1)dx/x(1-x+x^2)-(1/3)∫dx/x(1+x) =(1/3)∫dx/x(1-x+x^2)+ (1/3)∫dx/(1-x+x^2)+(1/3)ln(1+x)/x =(1/6)∫dx^2/x^2(1-x+x^2)+... =(1/6)∫(x-1)dx^2/[x^2(1-x+x^2)(x-1)]+.. =(1/6)∫dx^2/(x-1)(1-x+x^2)-(1/6)∫dx^2/x^2(x-1)+... =(1/3)∫dx/(x-1)(1-x+x^2)-(1/3)∫dx/x(x-1)+... =(1/3)∫dx/(x-1)-(1/3)∫(x-1)dx/(1-x+x^2)-(1/3)ln(x-1)/x+... =(1/3)ln(x-1)-(1/6)∫d(x^2-x+1)/(x^2-x+1)+(1/6)∫dx/(1-x+x^2)-(1/3)ln(x-1)/x+... =(-1/6)ln|x^2-x+1|+(1/√3)arctan[(2x-1)/√3] +(1/3)ln|x+1|+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式