请问lntanx的导数是什么?
1个回答
展开全部
lntanx/2的导数是:
=1/tan(x/2)*[tan(x/2)]'
=cos(x/2)/sin(x/2)*sec²(x/2)*(x/2)'
=cos(x/2)/sin(x/2)*1/cos²(x/2)*1/2
=1/[2sin(x/2)cos²(x/2)]
=1/sinx
导数运算法则
加法法则:(f(x)-g(x))'=f'(x)+g'(x)
减法法则:(f(x)+g(x))'=f'(x)-g'(x)
乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2
设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询