怎样理解等价无穷小替换?
1个回答
展开全部
lim(x~0)(tanx-x)/x^k
=lim(x~0)[(secx)^2-1]/kx^(k-1)
=lim(x~0)(tanx)^2/kx^(k-1)
~lim(x~0)x^(3-k)/k
=A为一个常数
3-k=0
k=3
所以等价无穷小为x^3
扩展资料:
等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时,使用等价无穷小的条件:
被代换的量,在取极限的时候极限值为0;
被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询