若2sina+cosa=-√5,则sinacosa的值为多少
1个回答
展开全部
2sina+cosa=-√5
(2/√5)sina+(1/√5)cosa=-1
sint=1/√5
cost=2/√5
sin(a+t)=-1=sin(3π/2)
a+t=3π/2
a=(3π/2)-t
sina=sin[(3π/2)-t]
=cos[π/2-(3π/2-t)]
=cos(-π-t)=cos[2π+(-π-t)]=cos(π-t)=-cost
cosa=cos[(3π/2)-t]
=cos[-2π+(3π/2)-t]=cos(-π/2-t)=cos(π/2+t)=sin[π/2-(π/2+t)]=sin(-t)=-sint
sinacosa=(-cost)*(-sint)=sintcost=(1/√5)*(2/√5)=2/5
(2/√5)sina+(1/√5)cosa=-1
sint=1/√5
cost=2/√5
sin(a+t)=-1=sin(3π/2)
a+t=3π/2
a=(3π/2)-t
sina=sin[(3π/2)-t]
=cos[π/2-(3π/2-t)]
=cos(-π-t)=cos[2π+(-π-t)]=cos(π-t)=-cost
cosa=cos[(3π/2)-t]
=cos[-2π+(3π/2)-t]=cos(-π/2-t)=cos(π/2+t)=sin[π/2-(π/2+t)]=sin(-t)=-sint
sinacosa=(-cost)*(-sint)=sintcost=(1/√5)*(2/√5)=2/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询