1个回答
展开全部
解:
原式=[3x/(x+2)-x/(x-2)]÷[x/(x²-4)]
={3x(x-2)/[(x+2)(x-2)]-x(x+2)/[(x+2)(x-2)]}÷{x/[(x+2)(x-2)]}
={[3x-x(x+2)]/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
={-x²+x)/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
={-x(x-1)/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
=1-x
=1-(-3)
=1+3
=4
原式=[3x/(x+2)-x/(x-2)]÷[x/(x²-4)]
={3x(x-2)/[(x+2)(x-2)]-x(x+2)/[(x+2)(x-2)]}÷{x/[(x+2)(x-2)]}
={[3x-x(x+2)]/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
={-x²+x)/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
={-x(x-1)/[(x+2)(x-2)]}×[(x+2)(x-2)/x]
=1-x
=1-(-3)
=1+3
=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询