
放缩法证明1/3^2+1/5^2+1/7^2+.......+1/(2n+1)^2<1/4
1个回答
展开全部
1/(2n+1)^2<1/2[1/2n-1/(2n+2)]
1/3^2+1/5^2+1/7^2+.......+1/(2n+1)^2
<1/2[1/2-1/4+1/4-1/6.....+1/2n-1/(2n+2)]
=1/4-1/(4n+4)<1/4
1/3^2+1/5^2+1/7^2+.......+1/(2n+1)^2
<1/2[1/2-1/4+1/4-1/6.....+1/2n-1/(2n+2)]
=1/4-1/(4n+4)<1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询