高考数学万能解题法 数学万能解题套路
高考数学有哪些解题方法呢,数学的万能套路有什么呢,下面我为大家分析一下,仅供大家参考。
高考数学导数解题方法
导数的基本问题
1.题型:
1).切线问题。
2).单调性,极值,值域,最值问题。
3).函数零点(方程的根)的个数和分布问题。
4).不等式恒成立、存在性、不等式证明问题。
5).与数列、不等式、解析几何的综合问题。
2.常规步骤:
1)求导数并变形,写出定义域。
变形的方法:
①.整式:因式分解或配方。
②.分式:通分母,并因式分解。
③.指数式:提取公因式。
④根式:分子有理化
2)解方程 , 判断导数的正负
判断导数正负的方法:
①.检验法。②.图像法。③.单调性法。④.求导数的导数。
3)列表由导函数的正负确认原函数的单调性和极值、最值
4)画函数草图解决问题。
1.求幂指函数的三种未定式,运用e抬头法转为基本未定式,然后再利用罗必达法则和等价无穷小量求极限。
2.求最值、极值或证明不等式,运用函数的导数,借助单调性研究问题。
3.微积分中值定理的运用,运用找原函数法(积分法)、公式法或者经验法等构造辅助函数证明。
4.二重积分的计算,运用“X-型(先Y后X),Y-型(先X后Y),-型(先r后)”。
高考数学高效解题方法
1.考前要摒弃杂念,排除干扰思绪,使大脑处于"空白”状态,创设数学情境,进而酝酿数学思维,提前进入"角色”, 通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压励, 轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
2.良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、 立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生"旗开得胜”的快意,从而有一一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,
高考数学万能解题方法
1.思路思想提炼法 催生解题灵感。“没有解题思想,就没有解题灵感”。但“解题思想”对很多学生来说是既熟悉又陌生的。熟悉是因为教师每天挂在嘴边,陌生就是说不请它究竟是什么。建议同学们在老师的指导下,多做典型的数学题目,则可以快速掌握。
2. 典型题型精熟法 抓准重点考点管理学的“二八法则”说:20%的重要工作产生80%的效果,而80%的琐碎工作只产生20%的效果。数学学习上也有同样现象:20%的题目(重点、考点集中的题目)对于考试成绩起到了80%的贡献。因此,提高数学成绩,必须优先抓住那20%的题目。针对许多学生“题目解答多,研究得不透”的现象,应当通过科学用脑,达到每个章节的典型题型都胸有成竹时,解题时就会得心应手。
3. 逐步深入纠错法 巩固薄弱环节管理学上的“木桶理论”说:一只水桶盛水多少由最短板决定,而不是由最长板决定。学数学也是这样,数学考试成绩往往会因为某些薄弱环节大受影响。因此,巩固某个薄弱环节,比做对一百道题更重要。