2个回答
展开全部
∫ 1/(1 + x⁴) dx
= (1/2)∫ [(1 + x²) + (1 - x²)]/(1 + x⁴) dx
= (1/2)∫ (1 + x²)/(1 + x⁴) dx + (1/2)∫ (1 - x²)/(1 + x⁴) dx
= (1/2)∫ (1/x² + 1)/(1/x² + x²) dx + (1/2)∫ (1/x² - 1)/(1/x² + x²) dx
= (1/2)∫ d(x - 1/x)/[(x - 1/x)² + 2] - (1/2)∫ d(x + 1/x)/[(x + 1/x)² - 2]
= (1/2)(1/√2)arctan[(x - 1/x)/√2] - (1/2)(1/2√2)ln|[(x + 1/x - √2)/(x + 1/x + √2)| + C
= (1/2√2)arctan(x/√2 - 1/x√2) - (1/4√2)ln|(x² - x√2 + 1)/(x² + x√2 + 1)| + C
= (1/2)∫ [(1 + x²) + (1 - x²)]/(1 + x⁴) dx
= (1/2)∫ (1 + x²)/(1 + x⁴) dx + (1/2)∫ (1 - x²)/(1 + x⁴) dx
= (1/2)∫ (1/x² + 1)/(1/x² + x²) dx + (1/2)∫ (1/x² - 1)/(1/x² + x²) dx
= (1/2)∫ d(x - 1/x)/[(x - 1/x)² + 2] - (1/2)∫ d(x + 1/x)/[(x + 1/x)² - 2]
= (1/2)(1/√2)arctan[(x - 1/x)/√2] - (1/2)(1/2√2)ln|[(x + 1/x - √2)/(x + 1/x + √2)| + C
= (1/2√2)arctan(x/√2 - 1/x√2) - (1/4√2)ln|(x² - x√2 + 1)/(x² + x√2 + 1)| + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询