一个关于不定积分的问题
在有理函数的积分中,通常把分母变成几个没有公因式的多项式,那么这时如何确定分子呢?比如书上的例子(x+1)/(x^2-5x+6)可以变成A/(x-3)+B/(x-2)而(...
在有理函数的积分中,通常把分母变成几个没有公因式的多项式,那么这时如何确定分子呢?
比如书上的例子(x+1)/(x^2-5x+6)可以变成A/(x-3)+B/(x-2)
而(x+2)/(2x+1)(x^2+x+1)却是变成A/(2x+1)+(Bx+C)/x^2+x+1
为什么这两个式子变化后,分子的形式不同呢?
具体来说1/(x^2+1)(x^2+x)这个式子又怎么划呢?
希望大家指教,谢谢大家! 展开
比如书上的例子(x+1)/(x^2-5x+6)可以变成A/(x-3)+B/(x-2)
而(x+2)/(2x+1)(x^2+x+1)却是变成A/(2x+1)+(Bx+C)/x^2+x+1
为什么这两个式子变化后,分子的形式不同呢?
具体来说1/(x^2+1)(x^2+x)这个式子又怎么划呢?
希望大家指教,谢谢大家! 展开
2个回答
2012-03-27
展开全部
一般来说,分子的多项式的次数比分母的小1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询