复利终值计算公式
复利终值公式:
F=P×(1+i)n,即F=P×(F/P,i,n)。其中,(1+i)n称为复利终值系数,用符号(F/P,i,n)表示。复利是计算利息的一种方法。按照这种方法,每经过一个计息期,要将所生利息加入本金再计利息,逐期滚算,俗称“利滚利”。
举例:
张三拟投资10万元于一项目,该项目的投资期为5年,每年的投资报酬率为20%,张三盘算着:这10万元本金投入此项目后,5年后可以收回的本息合计为多少?分析:由于货币随时间的增长过程与复利的计算过程在数学上是相似的,因此,在计算货币的时间价值时,可以使用复利计算的各种方法。张三的这笔账实际上是关于"复利终值"的计算问题。假如张三在期初投入资金100000元,利息用i表示,那么:
经过1年的时间后,张三的本利和
经过2年的时间后,张三的本利和
依次类推,5年后,张三的本利和
我们称(1+i)n为复利终值系数,在实际运用时,通常查表得到其解。查复利终值表,得知当i=20%,n=5时,复利终值系数为2.4883,那么5年后张三的本利和
=100000×2.4883=248830元。当然,之所以系数表中的系数使用时与直接的幂指数计算结果有微小的差异,那是因为系数表中的系数不可能每一个系数精确到它的最后一位小数位,而是保留至多4位小数。