初中数学常用三角函数公式表
初中数学常用三角函数公式表如下:
一、锐角三角函数公式:
sinα=∠α的对边/斜边;cosα=∠α的邻边/斜边;tanα=∠α的对边/∠α的邻边;cotα=∠α的邻边/∠α的对边
二、倍角公式
Sin2A=2SinACosA;Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1;tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
三、三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α);cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)
四、三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
四、辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中:
sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2);tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
五、降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函数古希腊历史:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。
对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。
到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。
广告 您可能关注的内容 |