主成分分析的基本思想
1个回答
展开全部
主成分分析的基本思想介绍如下:
主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
主成分分析的主要作用
1.主成分分析能降低所研究的数据空间的维数。
2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。
3.多维数据的一种图形表示方法。
4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。
5.用主成分分析筛选回归变量。
最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。
拓展:
主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。
泰硕安诚
2024-09-05 广告
2024-09-05 广告
第二种是环境影响报告表,指的是对建设项目本身可能产生或是能周围环境造成较大污染和影响的; 第三种是环境影响登记表,指的是造成的污染或影响较轻。 国家对这三种形式的认定有个专门的目录,叫《建设项目环境影响分类管理目录》,对所有类别的项目进行分...
点击进入详情页
本回答由泰硕安诚提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询