小学四年级奥数题及答案6篇
1.小学四年级奥数题及答案 篇一
1、某校安排学生宿舍,如果每间5人,则有14人没有床位;如果每间7人,则多4个床位。该校有宿舍_____间,学生_____人。
解:(14+4)÷(7-5)=9(间)
9×5+14=59(人)。
2、用库存化肥给麦田施肥,如果每公亩施6千克,就缺200千克;如果每公亩施5千克,则剩下300千克,那么有_____公亩麦田,库存化肥_____千克。
解:(300+200)÷(6-5)=500(公亩);
500×5+300=2800(千克)。
3、某校学生参加劳动,分成若干组,如果10人一组,正好分完,如果12人一组,差10人。参加劳动的有_____人。
解:10÷(12-10)=5(组),5×10=50(人)
2.小学四年级奥数题及答案 篇二
1、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。
分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。
解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。
2、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?
分析:从甲筐取出放入乙筐,总数不变。甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。于是,问题就变成最基本的和差问题:和19千克,差3千克。
3.小学四年级奥数题及答案 篇三
1、有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。
(1)如果放牧16头牛,几天可以吃完牧草?
(2)要使牧草永远吃不完,最多可放多少头牛?
解答:
(1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
(2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。
2、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。
解:小明骑在甲牛背上赶乙牛过河后,再骑甲牛返回,用时2+1=3分钟
然后骑在丙牛背上赶丁牛过河后,再骑乙牛返回,用时6+2=8分钟
最后骑在甲牛背上赶乙牛过河,不用返回,用时2分钟。
总共用时(2+1)+(6+2)+2=13分钟。
4.小学四年级奥数题及答案 篇四
1、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米
2、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
5.小学四年级奥数题及答案 篇五
1、小华的爸爸1分钟可以剪好5只自己的指甲。他在5分钟内可以剪好几只自己的指甲?
2、小华带50元钱去商店买一个价值38元的小汽车,但售货员只找给他2元钱,这是为什么?
3、小军说:"我昨天去钓鱼,钓了一条无尾鱼,两条无头的鱼,三条半截的鱼。你猜我一共钓了几条鱼?"同学们猜猜小军一共钓了几条鱼?
4、6匹马拉着一架大车跑了6里,每匹马跑了多少里?6匹马一共跑了多少里?
5、一只绑在树干上的小狗,贪吃地上的一根骨头,但绳子不够长,差了5厘米。你能教小狗用什么办法抓着骨头呢?
参考答案:
1、20只,包括手指甲和脚指甲。
2、因为他付给售货员40元,所以只找给他2元。
3、0条,因为他钓的鱼是不存在的。
4、6里,36里。
5、只要教小狗转过身子用后脚抓骨头,就行了。
6.小学四年级奥数题及答案 篇六
1、某工人与老板签订了一份30天的劳务合同,工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元,该工人合同到期后并没有拿到报酬,则他最多工作了多少天?
答案:6天
解析:假设他没有休息,那么将会得到:30×48=1440元,休息一天则会少48+12=60元。所以休息了1440÷60=24天,所以工作了30-24=6天。
2、有一个五位数,在它后面写上一个7,得到一个六位数;在它前面写上一个7,也得到一个六位数。如果第二个六位数是第一个六位数的5倍,那么这个五位数是多少?
答案:14285
解析:设5位数是X,那么第一个六位数就是10X+7,第二个六位数就是700000+X,列出方程:700000+X=5×(10X+7),解得X=14285。
3、学生问老师今年有多少岁,老师说:“当我像你这么大时,我的年龄是你的年龄10倍,当你像我这么大时,我已经56岁了”,那么问老师今年多少岁?
答案:38岁
解析:假设老师与学生一样大时候,学生为1份,老师就是10份,此时年龄差是9份,所以现在学生为10份,老师为19份。当学生像老师这么大时,学生为19份,老师为28份,此时老师年龄是56岁,每一份就代表2岁,所以老师今年是19×2=38岁。