为什么两个随机变量X和Y的和不一定服从正态分布?
展开全部
两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,即X+Y不一定服从正态分布。
因为X和Y不是相互独立的。倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布。
推算过程(反例):
标准正太分布曲线图:
扩展资料:
正态分布第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。服从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小。
σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。
它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询