什么是小数?

 我来答
我是龙的传人76b8a2199
高粉答主

2023-05-22 · 关注我不会让你失望
知道顶级答主
回答量:6.4万
采纳率:95%
帮助的人:5087万
展开全部
小数是实数的一种特殊的表现形式,所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
主要写法折叠
整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
读法介绍折叠
有两种:一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读.例如:0.38读作百分之三十八,14.56读作十四又百分之五十六.另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五.
比较折叠
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较.
因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;
因为小数是十进分数,所以有下列性质:①在小数的末尾添上零或去掉零,小数的大小
不变.例如;2.4=2.400,0.060=0.06.②小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位… 位,则小数的值分别扩大10倍、 100倍、 1000倍……例如:把7.4扩大10倍是74,扩大100倍是740……
如果把小数点分别向左移动一位、二位、三位… 则小数的值分别缩小到原来的十分之一、 百分之一、 千分之一…... .例如:把7.4缩小到原来的十分之1是0.74,缩小到原来的百分之一是0.074……

小数的性质折叠编辑本段
小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍···
数学意义折叠编辑本段
可从分数的意义着手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或记录这个「分量」。例如:2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.1、2/100记成0.02、5/1000记成0.005……等。其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。
类型定义折叠编辑本段
纯小数折叠
整数部分是零的小数如0.1,绝对值一定小于1。如:0.12;0.945;0.403等如小数的初步认识等。
带小数折叠
整数部分是1或1以上的小数如1.1,绝对值一定大于等于1。
如:1.2345;9.45;1.43等
一个小数,从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现,这个小数叫做循环小数。
循环节折叠
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:0.33 ……循环节是“3”例如: 2.14242……循环节是“42”
纯循环小数:循环节从小数部分第一位开始的。(例如:0.666……)
混循环小数:循环节不是从小数部分第一位开始的。(例如:0.566……)
写循环小数时,为了简便,小数的循环部分只写出第一个循环节。如果循环节只有一个数字,就在这个数字上加一个圆点, 如果循环节有一个以上的数字,就在这个循环节的首位和末位的数字上各加一个圆点。
小数保留折叠编辑本段
保留小数:按要求在舍去部分最高位进行四舍五入运算。
无限不循环小数只能用小数表示不能用分数表示,而所有的有限小数和无限循环小数均能用分数表示,小数分为有限小数和无限小数,有限小数如1/5,无限小数包括无限不循环小数(如0.010010001……)和无限循环小数(如1/3 )
(有理数(rational number):能精确地表示为两个整数之比的数.
如3,-98.11,5.72727272……,7/22都是有理数.
整数和通常所说的分数都是有理数.有理数还可以划分为正有理数,0和负有理数.
在数的十进制小数表示系统中,有理数就是可表示为有限小数或无限循环小数的数.这一定义在其他进位制下(如二进制)也适用.《中国大百科全书》(数学)
因此,不矛盾。
小数乘以整数:
把小数乘法转化成整数乘法计算。
先把小数扩大成整数,按照整数乘法去计算,因数扩大了多少倍,积就要缩小多少倍。
积的小数位数与被乘数的小数位数有关,被乘数有几位小数,积就有几位小数。因为要把小数乘法转化成整数乘法,被乘数扩大了多少倍,乘数不变,积也随着扩大了多少倍。因此必须再把积缩小多少倍。
计算小数乘以整数,先按照整数乘法的计算方法算出积,再看被乘数中有几位小数,就从积的右边起数出几位,点上小数点。
互化介绍折叠编辑本段
小数与分数、百分数、千分数可以进行互化。
小数化分数折叠
有限小数化分数:小数表示的就是十分之一、百分之一、千分之一......所以,0.6可以化成十分之六,约分成五分之三。
纯循环小数化分数:整数部分照抄,小数部分循环节如果是一位分母为9,两位为99,三位为999......如0.2525......可以化成九十九分之九十九,能约分的要约分。
混循环小数化分数:整数部分照抄,小数部分循环节部分一位为9,两位为99,三位为999......不循环的部分有几位就在9的后面添几个零,分母整个小数部分,循环部分一位循环就只抄一位,两位就抄两位......。如0.13333......可以化成90分之13-1,就是90分之12,约分成十五分之二。
无限不循环小数:不能化成分数,因为无限不循环小数是无理数,分数全是有理数。
分数化小数折叠
分母是10,100,1000......的:可以直接化成小数,如,十分之七化成0.7,一百分之九化成0.09
分母不是10,100,1000......的:分子除以分母。一个最简分数,如果分母分解质因数只含有2、5的,可以化成有限小数;如果含有2、5以外的质因数,就不能化成有限小数,但绝对能化成循环小数。附加:如果分母分解质因数不含有2、5,只含有2、5以外的质因数,就能化成纯循环小数,如果既含有2、5,又含有2、5以外的质因数,就能化成混循环小数。
与百分数互化折叠
小数化百分数:用小数乘以100 ,然后添上百分号。如,0.756,化成百分数是75.6%。
百分数化小数:就是用分母是100的分数化成小数。或去掉百分号,除以100。
与千分数互化折叠
类似于百分数,只不过是除以1000,再加上千分号。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式