请问sinx/ x的原函数是什么?怎么求?
1个回答
展开全部
函数sinx/x的原函数不是初等函数,但是这个函数在[0,+∞)的广义积分却是可以求得的。
∫<0,+∞>sinx/x dx =π/2。
方法:
首先1/x=∫<0,+∞>e^(-ax) da
所以∫<0,+∞>sinx/x dx
=∫<0,+∞>sinx∫<0,+∞>e^(-ax) da dx
=∫<0,+∞> da∫<0,+∞>sinxe^(-ax)dx
=∫<0,+∞>1/(1+a^2) da
=π/2 (因为arctan'a=1/(1+a^2))
还有很多种方法,这种算是比较简单的吧
∫<0,+∞>sinx/x dx =π/2。
方法:
首先1/x=∫<0,+∞>e^(-ax) da
所以∫<0,+∞>sinx/x dx
=∫<0,+∞>sinx∫<0,+∞>e^(-ax) da dx
=∫<0,+∞> da∫<0,+∞>sinxe^(-ax)dx
=∫<0,+∞>1/(1+a^2) da
=π/2 (因为arctan'a=1/(1+a^2))
还有很多种方法,这种算是比较简单的吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询