求该圆锥的体积

已知圆锥顶点为A,过母线AB,AC的截面面积是2√3,若AB,AC的夹角是60°,且母线AC的长是高的2倍,求该圆锥的体积... 已知圆锥顶点为A,过母线AB,AC的截面面积是2√3,若AB,AC的夹角是60°,且母线AC的长是高的2倍,求该圆锥的体积 展开
 我来答
梦在飞翔213
2023-05-12 · 超过877用户采纳过TA的回答
知道小有建树答主
回答量:1787
采纳率:100%
帮助的人:53.9万
展开全部
首先,连接圆锥顶点A和底面圆心O。在底面圆上任取一点D,那么四边形ABOD为圆锥的一个截面。因为夹角BAC为60°,所以四边形ABOD是一个菱形且对角线相等为底面直径,设底面直径为d,则AB=OD=d/2。
又因为AC的长是高的2倍,所以设圆锥母线为l,高为h,则有AC=l,AO=l/2,且AC=2h,即l=2h。
根据截面面积公式得到:
2√3 = 1/2 * d * l
带入AB=OD=d/2,l=2h得到:
2√3 = (d/2) * (2h)
化简得:h = √3d/4
再根据圆锥体积公式得到:
V = 1/3 * π * r² * h
由于底面圆半径r等于底面直径d/2,其值为d/4,则:
V = 1/3 * π * (d/4)² * h
代入h=√3d/4,化简可得:
V = πd³/144
因此,该圆锥的体积为πd³/144。
Mob9527
2023-05-12 · 超过85用户采纳过TA的回答
知道小有建树答主
回答量:605
采纳率:57%
帮助的人:15.4万
展开全部

设圆锥的顶点为A,底面圆的半径为r,高为h。由题意可知,AB和AC分别是底面圆上的两条直径,且它们之间的夹角为60度。

由于AB和AC是底面圆上的直径,所以它们的长度相等,即AB = AC = 2r。

截面面积是2√3,可以推断截面是一个正六边形。

将正六边形分成六个等边三角形,其中每个三角形的面积为:

Area_triangle = (1/2) * AB * AC * sin(60°) = (1/2) * 2r * 2r * (√3/2) = 2r^2 * √3

由题目中给出的截面面积为2√3,所以有 2r^2 * √3 = 2√3,即 r^2 = 1。

由于母线AC的长度是高h的2倍,即 AC = 2h。

现在我们有三个关于圆锥的关系:

  • r^2 = 1

  • AB = AC = 2r

  • AC = 2h

  • 解这个方程组,我们可以得到 r = 1,AB = AC = 2,AC = 2h,即 h = 1。

    现在我们已经确定了圆锥的底面半径r和高h,可以计算体积了。

    圆锥的体积公式为 V = (1/3) * π * r^2 * h

    代入 r = 1 和 h = 1,得到 V = (1/3) * π * 1^2 * 1 = (1/3) * π。

    所以该圆锥的体积为 (1/3) * π。

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式