
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F 5
展开全部
额。。
大哥 根据定义 E F都为中点了
1.中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
编辑本段
2.中位线定理
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
如图,三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。
三角形的中位线所构成的小三角形面积是原三角形面积的四分之一。
大哥 根据定义 E F都为中点了
1.中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
编辑本段
2.中位线定理
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
如图,三角形两边中点的连线(中位线)平行于第BC边,且等于第三边的一半。
三角形的中位线所构成的小三角形面积是原三角形面积的四分之一。
展开全部
:(1)∵EF是△OAB的中位线,
∴EF∥AB,EF= 1/2AB,
而CD∥AB,CD= 1/2AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC=根号AB²+BC²= 根号4BC²+BC²= 根号5BC,
∴sin∠OEF=sin∠CAB= BC/AC= 1/根号5= 根号5/5;
(3)∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴ EG/CD= AE/AC= 1/3,即EG= 1/3CD,
同理FH= 1/3CD,
∴ (AB+CD)/GH= (2CD+CD)/(CD/3+CD+CD/3)= 9/5.
∴EF∥AB,EF= 1/2AB,
而CD∥AB,CD= 1/2AB,
∴EF=CD,∠OEF=∠OCD,∠OFE=∠ODC,
∴△FOE≌△DOC;
(2)∵在Rt△ABC中,AC=根号AB²+BC²= 根号4BC²+BC²= 根号5BC,
∴sin∠OEF=sin∠CAB= BC/AC= 1/根号5= 根号5/5;
(3)∵AE=OE=OC,EF∥CD,
∴△AEG∽△ACD,
∴ EG/CD= AE/AC= 1/3,即EG= 1/3CD,
同理FH= 1/3CD,
∴ (AB+CD)/GH= (2CD+CD)/(CD/3+CD+CD/3)= 9/5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为E、F分别为AO、BO的中点
故OE:OA=OF:OB=1/2
根据中位线定理得
EF//AB且EF=1/2AB
EF为△OAB的中位线
故OE:OA=OF:OB=1/2
根据中位线定理得
EF//AB且EF=1/2AB
EF为△OAB的中位线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询