如图,三角形ABC和三角形DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为_______
解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=√3...
解:连接OA、OD,
∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,
∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,
∴OD:OE=OA:OB= √3:1,
∵∠DOE+∠EOA=∠BOA+∠EOA 即∠DOA=∠EOB,
∴△DOA∽△EOB,
∴OD:OE=OA:OB=AD:BE= √3:1.
故为√ 3:1
为什么△DOA∽△EOB 只有∠DOA=∠EOB一个角相等啊 展开
∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,
∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,
∴OD:OE=OA:OB= √3:1,
∵∠DOE+∠EOA=∠BOA+∠EOA 即∠DOA=∠EOB,
∴△DOA∽△EOB,
∴OD:OE=OA:OB=AD:BE= √3:1.
故为√ 3:1
为什么△DOA∽△EOB 只有∠DOA=∠EOB一个角相等啊 展开
13个回答
展开全部
上面得到的结论:OD:OE=OA:OB,∠DOA=∠EOB 这是两边对应成比例,且夹角相等,相似三角形的判定方法之一呀
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有这条判定定理啊,看来你定理没有熟悉
如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-03-28
展开全部
OB/OA=OE/OD=1/√3
∠DOA=∠EOB
根据两边成比例,夹角相等
∠DOA=∠EOB
根据两边成比例,夹角相等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一组对应边成比例
OD:OE=OA:OB= √3:1
夹角相等∠DOA=∠EOB
∴△DOA∽△EOB
OD:OE=OA:OB= √3:1
夹角相等∠DOA=∠EOB
∴△DOA∽△EOB
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询