1+2=?这个问题的答案是什么
3个回答
展开全部
好像这个问题全世界仅只有陈景润最了解。
1742年,德国一位数学老师歌德巴赫曾向当时的大数学家欧拉提出如下问题:每个不小于6的偶数均可表为两个奇素数之和。但欧拉未能给出解答,这就是著名的歌德巴赫猜想。数学王子高斯曾说过:“数论是数学的皇冠,而歌德巴赫猜想则是皇冠上的明珠”。它事实上也是解析数论这一重要数论分支的一个中心课题。我国数学家在此取得了一系列重要的研究成果。1938年,著名数学家华罗庚证明了:几乎所有大于6的偶数均可表示成两个奇素数之和。也就是说歌德巴赫猜想几乎对所有的偶数成立。随后,我国数学家王元、潘承洞、陈景润又在弱型歌德巴赫问题上取得了一系列重要的进展。尤其是陈景润在1966年利用了筛法解决了歌德巴赫猜想“1+2”的问题。即:存在一个正常数,使得每个大于此常数的偶数均可表示为一个素数和一个不超过两个素数的乘积之和。这一结果是到目前为止,对歌德巴赫猜想研究的最好结果。国际上一般称之为“陈氏定理”。此结果一经发表,立即引起世界数学家的重视和兴趣。当时英国数学家哈伯斯坦姆与德国数学家李希特正合著一本《筛法》的数论专著。原有十章,付印后见到了陈景润的“1+2”的结果,特增印了第十一章。章名为“陈氏定理”。虽然这一结果离歌德巴赫猜想(即“1+1”)仅一步之遥,但要完全攻克它,仍然存在十分巨大的困难。有的数学家甚至认为若未发展出新的数学工具,要解决歌德巴赫猜想几乎不可能。
当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。
那么,什么是歌德巴赫猜想呢?
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:
(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
1742年,德国一位数学老师歌德巴赫曾向当时的大数学家欧拉提出如下问题:每个不小于6的偶数均可表为两个奇素数之和。但欧拉未能给出解答,这就是著名的歌德巴赫猜想。数学王子高斯曾说过:“数论是数学的皇冠,而歌德巴赫猜想则是皇冠上的明珠”。它事实上也是解析数论这一重要数论分支的一个中心课题。我国数学家在此取得了一系列重要的研究成果。1938年,著名数学家华罗庚证明了:几乎所有大于6的偶数均可表示成两个奇素数之和。也就是说歌德巴赫猜想几乎对所有的偶数成立。随后,我国数学家王元、潘承洞、陈景润又在弱型歌德巴赫问题上取得了一系列重要的进展。尤其是陈景润在1966年利用了筛法解决了歌德巴赫猜想“1+2”的问题。即:存在一个正常数,使得每个大于此常数的偶数均可表示为一个素数和一个不超过两个素数的乘积之和。这一结果是到目前为止,对歌德巴赫猜想研究的最好结果。国际上一般称之为“陈氏定理”。此结果一经发表,立即引起世界数学家的重视和兴趣。当时英国数学家哈伯斯坦姆与德国数学家李希特正合著一本《筛法》的数论专著。原有十章,付印后见到了陈景润的“1+2”的结果,特增印了第十一章。章名为“陈氏定理”。虽然这一结果离歌德巴赫猜想(即“1+1”)仅一步之遥,但要完全攻克它,仍然存在十分巨大的困难。有的数学家甚至认为若未发展出新的数学工具,要解决歌德巴赫猜想几乎不可能。
当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。
那么,什么是歌德巴赫猜想呢?
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想:
(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询