几道脑筋急转弯,大家来猜猜
1.一个警察追一个小偷,到了一个胡同都看到了一台自行车,可他俩都没有骑,警察接着追这个小偷。问:他俩个怎么没骑自行车。。???2.世界上最难的一道题!爱因斯坦在20世纪初...
1.一个警察追一个小偷,到了一个胡同都看到了一台自行车,可他俩都没有骑,警察接着追这个小偷。
问:他俩个怎么没骑自行车。。???
2.世界上最难的一道题!爱因斯坦在20世纪初出的这个谜语。他说世界上有98%的人答不出来。聪明的你,试试吧!
1、在一条街上,有5座房子,喷了5种颜色。
2、每个房里住着不同国籍的人
3、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物
问题是:谁养鱼?
提示:
1、英国人住红色房子
2、瑞典人养狗
3、丹麦人喝茶
4、绿色房子在白色房子左面
5、绿色房子主人喝咖啡
6、抽PallMall香烟的人养鸟
7、黄色房子主人抽Dunhill香烟
8、住在中间房子的人喝牛奶
9、挪威人住第一间房
10、抽Blends香烟的人住在养猫的人隔壁
11、养马的人住抽Dunhill香烟的人隔壁
12、抽BlueMaster的人喝啤酒
13、德国人抽Prince香烟
14、挪威人住蓝色房子隔壁
15、抽Blends香烟的人有一个喝水的邻居
3.四成熟的牛肉的七成熟的猪肉碰在一起为什么不打招呼
4.据说,在美国,5分钟能回答这道题的人,平均年薪25万美金以上。
题目:
5个海盗抢到了100颗宝石,每一颗都一样大和价值连城。他们决定怎么分:
1、抽签决定自己的号码(1、2、3、4、5)
2、首先,由1号提出分配方案,然后大家5人进行表决,而且仅当超过半数人的人同意时,按照他的提案进行分配,否则将被扔进大海喂鲨鱼。
3、如果1号死后,再由2号提出分配方案,然后大家4进行表决,而且仅当超过半数人的人同意时,按照他的提案进行分配,否则将被扔进大海喂鲨鱼。
4、如此类推
条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?如果你是聪明人,不妨在下面写上你的答案.
5.怎样使麻雀安静下来?
6.小明和小红都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小红,张老师问他们知道他
的生日是那一天吗?
3月4日 3月5日 3月8日 6月4日 6月7日 9月1日 9月5日 12月1日 12月2日 12月8日
小明说:如果我不知道的话,小红肯定也不知道
小红说:本来我也不知道,但是现在我知道了
小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天?
这个说回答出来不信
要说说你是怎么推出来的 展开
问:他俩个怎么没骑自行车。。???
2.世界上最难的一道题!爱因斯坦在20世纪初出的这个谜语。他说世界上有98%的人答不出来。聪明的你,试试吧!
1、在一条街上,有5座房子,喷了5种颜色。
2、每个房里住着不同国籍的人
3、每个人喝不同的饮料,抽不同品牌的香烟,养不同的宠物
问题是:谁养鱼?
提示:
1、英国人住红色房子
2、瑞典人养狗
3、丹麦人喝茶
4、绿色房子在白色房子左面
5、绿色房子主人喝咖啡
6、抽PallMall香烟的人养鸟
7、黄色房子主人抽Dunhill香烟
8、住在中间房子的人喝牛奶
9、挪威人住第一间房
10、抽Blends香烟的人住在养猫的人隔壁
11、养马的人住抽Dunhill香烟的人隔壁
12、抽BlueMaster的人喝啤酒
13、德国人抽Prince香烟
14、挪威人住蓝色房子隔壁
15、抽Blends香烟的人有一个喝水的邻居
3.四成熟的牛肉的七成熟的猪肉碰在一起为什么不打招呼
4.据说,在美国,5分钟能回答这道题的人,平均年薪25万美金以上。
题目:
5个海盗抢到了100颗宝石,每一颗都一样大和价值连城。他们决定怎么分:
1、抽签决定自己的号码(1、2、3、4、5)
2、首先,由1号提出分配方案,然后大家5人进行表决,而且仅当超过半数人的人同意时,按照他的提案进行分配,否则将被扔进大海喂鲨鱼。
3、如果1号死后,再由2号提出分配方案,然后大家4进行表决,而且仅当超过半数人的人同意时,按照他的提案进行分配,否则将被扔进大海喂鲨鱼。
4、如此类推
条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?如果你是聪明人,不妨在下面写上你的答案.
5.怎样使麻雀安静下来?
6.小明和小红都是张老师的学生,张老师的生日是M月N日,2人都知道张老师的生日是下列10组中的一天,张老师把M值告诉了小明,把N值告诉了小红,张老师问他们知道他
的生日是那一天吗?
3月4日 3月5日 3月8日 6月4日 6月7日 9月1日 9月5日 12月1日 12月2日 12月8日
小明说:如果我不知道的话,小红肯定也不知道
小红说:本来我也不知道,但是现在我知道了
小明说:哦,那我也知道了
请根据以上对话推断出张老师的生日是哪一天?
这个说回答出来不信
要说说你是怎么推出来的 展开
12个回答
展开全部
1、没气
2、1.挪威是1号房 牛奶是3号房
2.蓝是2号房
3.咖啡-绿是4号 白是5号房
4.英-红是3号房
5. 此时可以判定Dunhill-黄是1号,马是2号
6.假设丹-茶是5号房,则德-Prince是2号 blueMaster-啤酒就没有地方了,所以可以判定丹-茶是2号
7.则blueMaster-啤酒是5号
8.于是德-Prince是4号
9.于是Pall-鸟是3号
10. Blends是2号
11. 猫是1号
12. 矿泉水是1号
13. 瑞典-狗是5号
14. 最后那个德国人抽Prince喝咖啡 住绿房子 养鱼
详细的推理过程见下面的文字
第一间房子:
挪威人,屋子是黄色的,喝水,抽 Dunhill,养的是猫。
第二间房子:
丹麦人,屋子是蓝色的,喝茶,抽 Blends,养的是马。
第三间房子:
英国人,屋子是红色的,喝牛奶,抽 Pall Mall,养的是鸟。
第四间房子:
德国人,屋子是绿色的,喝咖啡,抽 Prince,养的是鱼。
第五间房子:
瑞典人,屋子是白色的,喝啤酒,抽 Blue Master,养的是狗。
养鱼的是德国人
推理过程:
首先定位一点,我们是按照房子的位置,从左至右,12345依次排开
挪威人住第1间房,在最左边。∵英国人住红色房子,挪威人住蓝色房子隔壁,∴挪威人房子的颜色只能是绿、黄、白,又∵绿色房子在白色房子左面,挪威人住蓝色房子隔壁,∴挪威人只能住黄色房子,抽Dunhill香烟,∴第2间房是蓝色房子,又∵养马的人住在抽Dunhill香烟的人隔壁,所以第2间房子的主人养马。∵绿色房子在白色房子左面,∴绿色房子只能在第3或者第4间。如果绿色房子在第3间(即中间那间),∵住在中间房子的人喝牛奶,∴绿色房子的主人喝牛奶,这与条件中绿色房子主人喝咖啡相矛盾。∴假设错误,绿色房子在第4间,其主人喝咖啡。进一步推出第3间房子是红色房子,住英国人,喝牛奶。第5间房子是白色房子。∵丹麦人喝茶,绿色房子主人喝咖啡,英国人喝牛奶,抽Blue Master的人喝啤酒,∴挪威人只能喝水。∵抽Blends香烟的人有一个喝水的邻居,∴抽Blends香烟的人只能住第2间房子。
现在我们来整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水。第2间房子是蓝色房子,主人养马,抽Blends香烟。第3间房子是红色房子,住英国人,喝牛奶。绿色房子在第4间,其主人喝咖啡。第5间房子是白色房子。∵抽Blue Master的人喝啤酒,∴既抽Blue Master,又喝啤酒的人只能住在第5间房子。∵德国人抽Prince香烟,∴德国人只能住第4间房子。∵抽Pall Mall香烟的人养鸟,∴只有英国人抽Pall Mall香烟,养鸟。∵抽Blends香烟的人住在养猫的人隔壁,又∵抽Blends香烟的人的隔壁只可能是挪威人或者英国人,∴养猫的人是挪威人或者英国人,又∵英国人养鸟,∴养猫的人是挪威人。
现在我们再来整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水,养猫。第2间房子是蓝色房子,主人养马,抽Blends香烟。第3间房子是红色房子,住英国人,喝牛奶,Pall Mall香烟,养鸟。第4间房子是绿色房子,住德国人,抽Prince香烟,喝咖啡。第5间房子是白色房子,主人抽Blue Master,喝啤酒。∵瑞典人养狗,又∵第1,2,3间房子的主人都不养狗,第4间房子的主人是德国人,∴第5间房子住瑞典人,养狗。∵第1,3,4,5间房子的主人分别是挪威人,英国人,德国人,瑞典人,∴第2间房子的主人是丹麦人,喝茶。
最后将战果整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水,养猫;第2间房子是蓝色房子,住丹麦人,抽Blends香烟,喝茶,养马;第3间房子是红色房子,住英国人,抽Pall Mall香烟,喝牛奶,养鸟;第4间房子是绿色房子,住德国人,抽Prince香烟,喝咖啡;第5间房子是白色房子,住瑞典人,抽Blue Master,喝啤酒,养狗。
结论:如果其中有人养鱼,则养鱼的必定是德国人!
2、key:挪威人,水,黄色,Dunhill,猫,
丹麦人,茶,蓝色,Blends,马,
英国人,牛奶,红色,Pall Mall,鸟,
德国人,咖啡,绿色,Prince,鱼,
瑞典人,啤酒,白色,Blue Master,狗,
3、他们不会说话
4、10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就
此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下提名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由
上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。最凶的一名海盗应当提出什么样的分配方案才能使
他获得最多的金子呢?
为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,而方案的提出就将倒过来从上至下地进行。
分析所有这类策略游戏的奥妙就在于应当从结尾出发倒推回去。游戏结束时,你容易知道何种决策有利而何种决策不利。确定了这一点后,你就可以把它用到倒数第2次决策上,如此类推。如果从游戏的开头出发进行分析,那是走不了多远的。其原因在于,所有的战略
决策都是要确定:“如果我这样做,那么下一个人会怎样做?”
因此在你以下海盗所做的决定对你来说是重要的,而在你之前的海盗所做的决定并不重要,因为你反正对这些决定也无能为力了。
记住了这一点,就可以知道我们的出发点应当是游戏进行到只剩两名海盗——即1号和2号——的时候。这时最厉害的海盗是2号,而他的最佳分配方案是一目了然的:100块金子全归他一人所有,1号海盗什么也得不到。由于他自己肯定为这个方案投赞成票,这样
就占了总数的50%,因此方案获得通过。
现在加上3号海盗。1号海盗知道,如果3号的方案被否决,那么最后将只剩2个海盗,而1号将肯定一无所获——此外,3号也明白1号了解这一形势。因此,只要3号的分配方案给1号一点甜头使他不至于空手而归,那么不论3号提出什么样的分配方案,1号都将
投赞成票。因此3号需要分出尽可能少的一点金子来贿赂1号海盗,这样就有了下面的分配方案:
3号海盗分得99块金子,2号海盗一无所获,1号海盗得1块金子。
4号海盗的策略也差不多。他需要有50%的支持票,因此同3号一样也需再找一人做同党。他可以给同党的最低贿赂是1块金子,而他可以用这块金子来收买2号海盗。因为如果4号被否决而3号得以通过,则2号将一文不名。因此,4号的分配方案应是:99块金
子归自己,3号一块也得不到,2号得1块金子,1号也是一块也得不到。
5号海盗的策略稍有不同。他需要收买另两名海盗,因此至少得用2块金子来贿赂,才能使自己的方案得到采纳。他的分配方案应该是:98块金子归自己,1块金子给3号,1块金子给1号。
这一分析过程可以照着上述思路继续进行下去。每个分配方案都是唯一确定的,它可以使提出该方案的海盗获得尽可能多的金子,同时又保证该方案肯定能通过。照这一模式进行下去,10号海盗提出的方案将是96块金子归他所有,其他编号为偶数的海盗各得1块金
子,而编号为奇数的海盗则什么也得不到。这就解决了10名海盗的分配难题。
Omohundro的贡献是他把这一问题扩大到有500名海盗的情形,即500名海盗瓜分100块金子。显然,类似的规律依然成立——至少是在一定范围内成立。事实上,前面所述的规律直到第200号海盗都成立。
200号海盗的方案将是:从1到199号的所有奇数号的海盗都将一无所获,而从2到198号的所有偶数号海盗将各得1块金子,剩下的1块金子归200号海盗自己所有。
乍看起来,这一论证方法到200号之后将不再适用了,因为201号拿不出更多的金子来收买其他海盗。但是即使分不到金子,201号至少还希望自己不会被扔进海里,因此他可以这样分配:给1到199号的所有奇数号海盗每人1块金子,自己一块也不要。
202号海盗同样别无选择,只能一块金子都不要了——他必须把这100块金子全部用来收买100名海盗,而且这100名海盗还必须是那些按照201号方案将一无所获的人。由于这样的海盗有101名,因此202号的方案将不再是唯一的——贿赂方案有10
1种。
203号海盗必须获得102张赞成票,但他显然没有足够的金子去收买101名同伙。因此,无论提出什么样的分配方案,他都注定会被扔到海里去喂鱼。不过,尽管203号命中注定死路一条,但并不是说他在游戏进程中不起任何作用。相反,204号现在知道,
203号为了能保住性命,就必须避免由他自己来提出分配方案这么一种局面,所以无论204号海盗提出什么样的方案,203号都一定会投赞成票。这样204号海盗总算侥幸拣到一条命:他可以得到他自己的1票、203号的1票、以及另外100名收买的海盗的赞
成票,刚好达到保命所需的50%。获得金子的海盗,必属于根据202号方案肯定将一无所获的那101名海盗之列。
205号海盗的命运又如何呢?他可没有这样走运了。他不能指望203号和204号支持他的方案,因为如果他们投票反对205号方案,就可以幸灾乐祸地看到205号被扔到海里去喂鱼,而他们自己的性命却仍然能够保全。这样,无论205号海盗提出什么方案
都必死无疑。206号海盗也是如此——他肯定可以得到205号的支持,但这不足以救他一命。类似地,207号海盗需要104张赞成票——除了他收买的100张赞成票以及他自己的1张赞成票之外,他还需3张赞成票才能免于一死。他可以获得205号和206号
的支持,但还差一张票却是无论如何也弄不到了,因此207号海盗的命运也是下海喂鱼。
208号又时来运转了。他需要104张赞成票,而205、206、207号都会支持他,加上他自己一票及收买的100票,他得以过关保命。获得他贿赂的必属于那些根据204号方案肯定将一无所获的人(候选人包括2到200号中所有偶数号的海盗、以及2
01、203、204号)。
现在可以看出一条新的、此后将一直有效的规律:那些方案能过关的海盗(他们的分配方案全都是把金子用来收买100名同伙而自己一点都得不到)相隔的距离越来越远,而在他们之间的海盗则无论提什么样的方案都会被扔进海里——因此为了保命,他们必会投票支
持比他们厉害的海盗提出的任何分配方案。得以避免葬身鱼腹的海盗包括201、202、204、208、216、232、264、328、456号,即其号码等于200加2的某一方幂的海盗。
现在我们来看看哪些海盗是获得贿赂的幸运儿。分配贿赂的方法是不唯一的,其中一种方法是让201号海盗把贿赂分给1到199号的所有奇数编号的海盗,让202号分给2到200号的所有偶数编号的海盗,然后是让204号贿赂奇数编号的海盗,208号贿赂
偶数编号的海盗,如此类推,也就是轮流贿赂奇数编号和偶数编号的海盗。
结论是:当500名海盗运用最优策略来瓜分金子时,头44名海盗必死无疑,而456号海盗则给从1到199号中所有奇数编号的海盗每人分1块金子,问题就解决了。由于这些海盗所实行的那种民主制度,他们的事情就搞成了最厉害的一批海盗多半都是下海喂鱼
,不过有时他们也会觉得自己很幸运——虽然分不到抢来的金子,但总可以免于一死。只有最怯懦的200名海盗有可能分得一份脏物,而他们之中又只有一半的人能真正得到一块金子,的确是怯懦者继承财富。
4、5号:不同意,或者有条件同意
轮到5号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,死
5得到100个宝石,活,同意
此海盗是最后一个轮到,不存在生命危险,所以也没必要"同意"!除非有得到一定的好处
但是他想捞到好处是很有难度的,因为其他海盗也很聪明!
其实他当然也会意识到这点
所以此海盗不会同意别人的方案,除非他获得一定的利益
4号:同意
轮到4号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,可以保不死(但也说不定),同意
5得到100个宝石,活,同意(或不同意)
此海盗最担心的是轮到他头上(祈祷中...),即使全部100个宝石奉送给5号,他才有可能保不死(仍然有风险),否则就死定了!(注意是超过半数同意才行,也就是说刚好达到半数还不够,否则就可以独吞了)
所以此海盗不管如何都会同意别人的方案,否则对他来讲没有任何好处,反而增加步步逼近的危险!
3号:不同意,或者有条件同意
轮到3号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到100个宝石,活,同意
4得到0个宝石,活,同意
5得到0个宝石,活,不同意
轮到3号时,他是绝不会巴结5号的,因为不知道他需要多少"度"才会同意,要巴结的话只要给4号1个宝石就够了,但事实上一个都不用巴结,因为5号也会认识到这点,所以5号是绝对"不同意"的,介于5号"不同意",4号也会猜想到这点,所以4号就不能再"不同意",否则4号是自找死路,所以就固然有大于半数的支持者了
但是能否轮到他呢?
问题是这海盗太聪明了,事实上他进一步想,突然觉得不对,因为将不可能轮到他的,前面2号的海盗没那么傻,说不定他等下一个也得不到,所以在1号的方案时,他的要求变的很低了,"求求1号给我1颗宝石吧,我会同意的"....(这样也行$!@$%^%&*^),哈哈:),早拿早好嘛,有一个算一个!
所以此海盗肯定不同意别人的分配方案,除非有得到一点好处
2号:不同意
轮到2号时,形成的状态是:
1得到0个宝石,死
2得到99个宝石,活,同意
3得到0个宝石,活,不同意
4得到0个宝石,活,同意
5得到1个宝石,活,同意
要是轮到此海盗他必会拿走99颗宝石,然后给1颗5号即可!
原因:
3号不同意的,因为他想要得到100个宝石的机会(如果给1个以上,或许会同意)
4号同意,否则只有坏处多多,有风险存在
5号给他1个宝石就OK了,否则到了下一轮,将一颗也得不到,不拿白不拿!
所以此海盗不会同意1号的分配方案,除非给他100颗宝石
其实不然,这都是错误的想法,怪就怪他们太聪明了!
因为他知道1号很聪明的,他早已算出1号将会以99,0,1,0,0的分法搞定,所以轮不到他,想得到99颗的想法才是妄想,而且1号也不可能给他1-2颗宝石的,他知道1号要是这样做是在冒风险,所以他只有"不同意"一博
1号:此海盗当然也聪明了,他早已知道后面的海盗心里想什么,首先4号是一定同意了(因为不管哪一轮他都没有宝石,如果不早点同意的话说不定局势改变了,有风险啊),那么只要再找一个海盗同意即可安全了,左思右想,巴结谁呢?还用想...汗!
2号肯定不给的,给了说不定也是白给
3号给1颗就能搞定,否则到了下一轮他一个也得不到
5号给1颗不一定够呀(除非给2颗,因为到了下一轮(2号决定时)他仍然有机会得到1颗宝石,所以5号干嘛急着同意呢,不急不急)
最终结局的状态是:
1得到99个宝石,活,同意
2得到 0个宝石,活,不同意
3得到 1个宝石,活,同意
4得到 0个宝石,活,同意
5得到 0个宝石,活,不同意
即:99,0,1,0,0 (1号利益最大化)
5、压一压 鸦(压)雀无声
6、9月1日
小明知道的M值为3、6、9、12中的其中之一
小红知道的N值为1、2、4、5、7、8中的其中之一
第一句,排除6月,12月。如果小明拿到6月,12月,小红则有可能知道生日(因为小红拿到7或2就知道了生日,6月7日,12月2日的N是唯一的),小明则不敢100%的肯定说小红不知道。所以小明拿的是3月或9月。
第二句,1、排除2日,7日。据小红说“本来不知道”的话推出;所以小红拿到的只能是1日,4日,5日,8日。老师生日可能是:3月4日 3月5日 3月8日9月1日9月5日
2、排除5日。如果小红拿的5日,则有可能是3月5日或9月5日。小红不敢100%肯定自己知道。所以小红拿到的只能是1日,4日,8日;老师的生日可能是:3月4日 3月8日9月1日
第三句,排除3月。据小明肯定的说自己知道了,只能是9月。如果是3月,则有3月4日 3月8日,他不能根据小红的话说自己知道了。所以老师的生日是:9月1日
2、1.挪威是1号房 牛奶是3号房
2.蓝是2号房
3.咖啡-绿是4号 白是5号房
4.英-红是3号房
5. 此时可以判定Dunhill-黄是1号,马是2号
6.假设丹-茶是5号房,则德-Prince是2号 blueMaster-啤酒就没有地方了,所以可以判定丹-茶是2号
7.则blueMaster-啤酒是5号
8.于是德-Prince是4号
9.于是Pall-鸟是3号
10. Blends是2号
11. 猫是1号
12. 矿泉水是1号
13. 瑞典-狗是5号
14. 最后那个德国人抽Prince喝咖啡 住绿房子 养鱼
详细的推理过程见下面的文字
第一间房子:
挪威人,屋子是黄色的,喝水,抽 Dunhill,养的是猫。
第二间房子:
丹麦人,屋子是蓝色的,喝茶,抽 Blends,养的是马。
第三间房子:
英国人,屋子是红色的,喝牛奶,抽 Pall Mall,养的是鸟。
第四间房子:
德国人,屋子是绿色的,喝咖啡,抽 Prince,养的是鱼。
第五间房子:
瑞典人,屋子是白色的,喝啤酒,抽 Blue Master,养的是狗。
养鱼的是德国人
推理过程:
首先定位一点,我们是按照房子的位置,从左至右,12345依次排开
挪威人住第1间房,在最左边。∵英国人住红色房子,挪威人住蓝色房子隔壁,∴挪威人房子的颜色只能是绿、黄、白,又∵绿色房子在白色房子左面,挪威人住蓝色房子隔壁,∴挪威人只能住黄色房子,抽Dunhill香烟,∴第2间房是蓝色房子,又∵养马的人住在抽Dunhill香烟的人隔壁,所以第2间房子的主人养马。∵绿色房子在白色房子左面,∴绿色房子只能在第3或者第4间。如果绿色房子在第3间(即中间那间),∵住在中间房子的人喝牛奶,∴绿色房子的主人喝牛奶,这与条件中绿色房子主人喝咖啡相矛盾。∴假设错误,绿色房子在第4间,其主人喝咖啡。进一步推出第3间房子是红色房子,住英国人,喝牛奶。第5间房子是白色房子。∵丹麦人喝茶,绿色房子主人喝咖啡,英国人喝牛奶,抽Blue Master的人喝啤酒,∴挪威人只能喝水。∵抽Blends香烟的人有一个喝水的邻居,∴抽Blends香烟的人只能住第2间房子。
现在我们来整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水。第2间房子是蓝色房子,主人养马,抽Blends香烟。第3间房子是红色房子,住英国人,喝牛奶。绿色房子在第4间,其主人喝咖啡。第5间房子是白色房子。∵抽Blue Master的人喝啤酒,∴既抽Blue Master,又喝啤酒的人只能住在第5间房子。∵德国人抽Prince香烟,∴德国人只能住第4间房子。∵抽Pall Mall香烟的人养鸟,∴只有英国人抽Pall Mall香烟,养鸟。∵抽Blends香烟的人住在养猫的人隔壁,又∵抽Blends香烟的人的隔壁只可能是挪威人或者英国人,∴养猫的人是挪威人或者英国人,又∵英国人养鸟,∴养猫的人是挪威人。
现在我们再来整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水,养猫。第2间房子是蓝色房子,主人养马,抽Blends香烟。第3间房子是红色房子,住英国人,喝牛奶,Pall Mall香烟,养鸟。第4间房子是绿色房子,住德国人,抽Prince香烟,喝咖啡。第5间房子是白色房子,主人抽Blue Master,喝啤酒。∵瑞典人养狗,又∵第1,2,3间房子的主人都不养狗,第4间房子的主人是德国人,∴第5间房子住瑞典人,养狗。∵第1,3,4,5间房子的主人分别是挪威人,英国人,德国人,瑞典人,∴第2间房子的主人是丹麦人,喝茶。
最后将战果整理一下,第1间房子是黄色房子,住挪威人,抽Dunhill香烟,喝水,养猫;第2间房子是蓝色房子,住丹麦人,抽Blends香烟,喝茶,养马;第3间房子是红色房子,住英国人,抽Pall Mall香烟,喝牛奶,养鸟;第4间房子是绿色房子,住德国人,抽Prince香烟,喝咖啡;第5间房子是白色房子,住瑞典人,抽Blue Master,喝啤酒,养狗。
结论:如果其中有人养鱼,则养鱼的必定是德国人!
2、key:挪威人,水,黄色,Dunhill,猫,
丹麦人,茶,蓝色,Blends,马,
英国人,牛奶,红色,Pall Mall,鸟,
德国人,咖啡,绿色,Prince,鱼,
瑞典人,啤酒,白色,Blue Master,狗,
3、他们不会说话
4、10名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就
此方案进行表决。如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。否则提出方案的海盗将被扔到海里,然后下提名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。他们当然也不愿意自己被扔到海里。所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。此外,没有两名海盗是同等厉害的——这些海盗按照完全由
上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。最凶的一名海盗应当提出什么样的分配方案才能使
他获得最多的金子呢?
为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,而方案的提出就将倒过来从上至下地进行。
分析所有这类策略游戏的奥妙就在于应当从结尾出发倒推回去。游戏结束时,你容易知道何种决策有利而何种决策不利。确定了这一点后,你就可以把它用到倒数第2次决策上,如此类推。如果从游戏的开头出发进行分析,那是走不了多远的。其原因在于,所有的战略
决策都是要确定:“如果我这样做,那么下一个人会怎样做?”
因此在你以下海盗所做的决定对你来说是重要的,而在你之前的海盗所做的决定并不重要,因为你反正对这些决定也无能为力了。
记住了这一点,就可以知道我们的出发点应当是游戏进行到只剩两名海盗——即1号和2号——的时候。这时最厉害的海盗是2号,而他的最佳分配方案是一目了然的:100块金子全归他一人所有,1号海盗什么也得不到。由于他自己肯定为这个方案投赞成票,这样
就占了总数的50%,因此方案获得通过。
现在加上3号海盗。1号海盗知道,如果3号的方案被否决,那么最后将只剩2个海盗,而1号将肯定一无所获——此外,3号也明白1号了解这一形势。因此,只要3号的分配方案给1号一点甜头使他不至于空手而归,那么不论3号提出什么样的分配方案,1号都将
投赞成票。因此3号需要分出尽可能少的一点金子来贿赂1号海盗,这样就有了下面的分配方案:
3号海盗分得99块金子,2号海盗一无所获,1号海盗得1块金子。
4号海盗的策略也差不多。他需要有50%的支持票,因此同3号一样也需再找一人做同党。他可以给同党的最低贿赂是1块金子,而他可以用这块金子来收买2号海盗。因为如果4号被否决而3号得以通过,则2号将一文不名。因此,4号的分配方案应是:99块金
子归自己,3号一块也得不到,2号得1块金子,1号也是一块也得不到。
5号海盗的策略稍有不同。他需要收买另两名海盗,因此至少得用2块金子来贿赂,才能使自己的方案得到采纳。他的分配方案应该是:98块金子归自己,1块金子给3号,1块金子给1号。
这一分析过程可以照着上述思路继续进行下去。每个分配方案都是唯一确定的,它可以使提出该方案的海盗获得尽可能多的金子,同时又保证该方案肯定能通过。照这一模式进行下去,10号海盗提出的方案将是96块金子归他所有,其他编号为偶数的海盗各得1块金
子,而编号为奇数的海盗则什么也得不到。这就解决了10名海盗的分配难题。
Omohundro的贡献是他把这一问题扩大到有500名海盗的情形,即500名海盗瓜分100块金子。显然,类似的规律依然成立——至少是在一定范围内成立。事实上,前面所述的规律直到第200号海盗都成立。
200号海盗的方案将是:从1到199号的所有奇数号的海盗都将一无所获,而从2到198号的所有偶数号海盗将各得1块金子,剩下的1块金子归200号海盗自己所有。
乍看起来,这一论证方法到200号之后将不再适用了,因为201号拿不出更多的金子来收买其他海盗。但是即使分不到金子,201号至少还希望自己不会被扔进海里,因此他可以这样分配:给1到199号的所有奇数号海盗每人1块金子,自己一块也不要。
202号海盗同样别无选择,只能一块金子都不要了——他必须把这100块金子全部用来收买100名海盗,而且这100名海盗还必须是那些按照201号方案将一无所获的人。由于这样的海盗有101名,因此202号的方案将不再是唯一的——贿赂方案有10
1种。
203号海盗必须获得102张赞成票,但他显然没有足够的金子去收买101名同伙。因此,无论提出什么样的分配方案,他都注定会被扔到海里去喂鱼。不过,尽管203号命中注定死路一条,但并不是说他在游戏进程中不起任何作用。相反,204号现在知道,
203号为了能保住性命,就必须避免由他自己来提出分配方案这么一种局面,所以无论204号海盗提出什么样的方案,203号都一定会投赞成票。这样204号海盗总算侥幸拣到一条命:他可以得到他自己的1票、203号的1票、以及另外100名收买的海盗的赞
成票,刚好达到保命所需的50%。获得金子的海盗,必属于根据202号方案肯定将一无所获的那101名海盗之列。
205号海盗的命运又如何呢?他可没有这样走运了。他不能指望203号和204号支持他的方案,因为如果他们投票反对205号方案,就可以幸灾乐祸地看到205号被扔到海里去喂鱼,而他们自己的性命却仍然能够保全。这样,无论205号海盗提出什么方案
都必死无疑。206号海盗也是如此——他肯定可以得到205号的支持,但这不足以救他一命。类似地,207号海盗需要104张赞成票——除了他收买的100张赞成票以及他自己的1张赞成票之外,他还需3张赞成票才能免于一死。他可以获得205号和206号
的支持,但还差一张票却是无论如何也弄不到了,因此207号海盗的命运也是下海喂鱼。
208号又时来运转了。他需要104张赞成票,而205、206、207号都会支持他,加上他自己一票及收买的100票,他得以过关保命。获得他贿赂的必属于那些根据204号方案肯定将一无所获的人(候选人包括2到200号中所有偶数号的海盗、以及2
01、203、204号)。
现在可以看出一条新的、此后将一直有效的规律:那些方案能过关的海盗(他们的分配方案全都是把金子用来收买100名同伙而自己一点都得不到)相隔的距离越来越远,而在他们之间的海盗则无论提什么样的方案都会被扔进海里——因此为了保命,他们必会投票支
持比他们厉害的海盗提出的任何分配方案。得以避免葬身鱼腹的海盗包括201、202、204、208、216、232、264、328、456号,即其号码等于200加2的某一方幂的海盗。
现在我们来看看哪些海盗是获得贿赂的幸运儿。分配贿赂的方法是不唯一的,其中一种方法是让201号海盗把贿赂分给1到199号的所有奇数编号的海盗,让202号分给2到200号的所有偶数编号的海盗,然后是让204号贿赂奇数编号的海盗,208号贿赂
偶数编号的海盗,如此类推,也就是轮流贿赂奇数编号和偶数编号的海盗。
结论是:当500名海盗运用最优策略来瓜分金子时,头44名海盗必死无疑,而456号海盗则给从1到199号中所有奇数编号的海盗每人分1块金子,问题就解决了。由于这些海盗所实行的那种民主制度,他们的事情就搞成了最厉害的一批海盗多半都是下海喂鱼
,不过有时他们也会觉得自己很幸运——虽然分不到抢来的金子,但总可以免于一死。只有最怯懦的200名海盗有可能分得一份脏物,而他们之中又只有一半的人能真正得到一块金子,的确是怯懦者继承财富。
4、5号:不同意,或者有条件同意
轮到5号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,死
5得到100个宝石,活,同意
此海盗是最后一个轮到,不存在生命危险,所以也没必要"同意"!除非有得到一定的好处
但是他想捞到好处是很有难度的,因为其他海盗也很聪明!
其实他当然也会意识到这点
所以此海盗不会同意别人的方案,除非他获得一定的利益
4号:同意
轮到4号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到0个宝石,死
4得到0个宝石,可以保不死(但也说不定),同意
5得到100个宝石,活,同意(或不同意)
此海盗最担心的是轮到他头上(祈祷中...),即使全部100个宝石奉送给5号,他才有可能保不死(仍然有风险),否则就死定了!(注意是超过半数同意才行,也就是说刚好达到半数还不够,否则就可以独吞了)
所以此海盗不管如何都会同意别人的方案,否则对他来讲没有任何好处,反而增加步步逼近的危险!
3号:不同意,或者有条件同意
轮到3号时,形成的状态是:
1得到0个宝石,死
2得到0个宝石,死
3得到100个宝石,活,同意
4得到0个宝石,活,同意
5得到0个宝石,活,不同意
轮到3号时,他是绝不会巴结5号的,因为不知道他需要多少"度"才会同意,要巴结的话只要给4号1个宝石就够了,但事实上一个都不用巴结,因为5号也会认识到这点,所以5号是绝对"不同意"的,介于5号"不同意",4号也会猜想到这点,所以4号就不能再"不同意",否则4号是自找死路,所以就固然有大于半数的支持者了
但是能否轮到他呢?
问题是这海盗太聪明了,事实上他进一步想,突然觉得不对,因为将不可能轮到他的,前面2号的海盗没那么傻,说不定他等下一个也得不到,所以在1号的方案时,他的要求变的很低了,"求求1号给我1颗宝石吧,我会同意的"....(这样也行$!@$%^%&*^),哈哈:),早拿早好嘛,有一个算一个!
所以此海盗肯定不同意别人的分配方案,除非有得到一点好处
2号:不同意
轮到2号时,形成的状态是:
1得到0个宝石,死
2得到99个宝石,活,同意
3得到0个宝石,活,不同意
4得到0个宝石,活,同意
5得到1个宝石,活,同意
要是轮到此海盗他必会拿走99颗宝石,然后给1颗5号即可!
原因:
3号不同意的,因为他想要得到100个宝石的机会(如果给1个以上,或许会同意)
4号同意,否则只有坏处多多,有风险存在
5号给他1个宝石就OK了,否则到了下一轮,将一颗也得不到,不拿白不拿!
所以此海盗不会同意1号的分配方案,除非给他100颗宝石
其实不然,这都是错误的想法,怪就怪他们太聪明了!
因为他知道1号很聪明的,他早已算出1号将会以99,0,1,0,0的分法搞定,所以轮不到他,想得到99颗的想法才是妄想,而且1号也不可能给他1-2颗宝石的,他知道1号要是这样做是在冒风险,所以他只有"不同意"一博
1号:此海盗当然也聪明了,他早已知道后面的海盗心里想什么,首先4号是一定同意了(因为不管哪一轮他都没有宝石,如果不早点同意的话说不定局势改变了,有风险啊),那么只要再找一个海盗同意即可安全了,左思右想,巴结谁呢?还用想...汗!
2号肯定不给的,给了说不定也是白给
3号给1颗就能搞定,否则到了下一轮他一个也得不到
5号给1颗不一定够呀(除非给2颗,因为到了下一轮(2号决定时)他仍然有机会得到1颗宝石,所以5号干嘛急着同意呢,不急不急)
最终结局的状态是:
1得到99个宝石,活,同意
2得到 0个宝石,活,不同意
3得到 1个宝石,活,同意
4得到 0个宝石,活,同意
5得到 0个宝石,活,不同意
即:99,0,1,0,0 (1号利益最大化)
5、压一压 鸦(压)雀无声
6、9月1日
小明知道的M值为3、6、9、12中的其中之一
小红知道的N值为1、2、4、5、7、8中的其中之一
第一句,排除6月,12月。如果小明拿到6月,12月,小红则有可能知道生日(因为小红拿到7或2就知道了生日,6月7日,12月2日的N是唯一的),小明则不敢100%的肯定说小红不知道。所以小明拿的是3月或9月。
第二句,1、排除2日,7日。据小红说“本来不知道”的话推出;所以小红拿到的只能是1日,4日,5日,8日。老师生日可能是:3月4日 3月5日 3月8日9月1日9月5日
2、排除5日。如果小红拿的5日,则有可能是3月5日或9月5日。小红不敢100%肯定自己知道。所以小红拿到的只能是1日,4日,8日;老师的生日可能是:3月4日 3月8日9月1日
第三句,排除3月。据小明肯定的说自己知道了,只能是9月。如果是3月,则有3月4日 3月8日,他不能根据小红的话说自己知道了。所以老师的生日是:9月1日
展开全部
前面有一片草地---猜一植物:梅花(没花)
前面又有一片草地---再猜一植物:野梅花(也没花)
那片草地来了一群羊---还猜一植物:草莓(草没)
突然又来了一群狼---继续猜一植物:杨梅(羊没)
前面又有一片草地---再猜一植物:野梅花(也没花)
那片草地来了一群羊---还猜一植物:草莓(草没)
突然又来了一群狼---继续猜一植物:杨梅(羊没)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那我就先答6题
解答:9月1日
小明知道的M值为3、6、9、12中的其中之一
小红知道的N值为1、2、4、5、7、8中的其中之一
第一句,排除6月,12月。如果小明拿到6月,12月,小红则有可能知道生日(因为小红拿到7或2就知道了生日,6月7日,12月2日的N是唯一的),小明则不敢100%的肯定说小红不知道。所以小明拿的是3月或9月。
第二句,1、排除2日,7日。据小红说“本来不知道”的话推出;所以小红拿到的只能是1日,4日,5日,8日。老师生日可能是:3月4日 3月5日 3月8日9月1日9月5日
2、排除5日。如果小红拿的5日,则有可能是3月5日或9月5日。小红不敢100%肯定自己知道。所以小红拿到的只能是1日,4日,8日;老师的生日可能是:3月4日 3月8日9月1日
第三句,排除3月。据小明肯定的说自己知道了,只能是9月。如果是3月,则有3月4日 3月8日,他不能根据小红的话说自己知道了。所以老师的生日是:9月1日
解答:9月1日
小明知道的M值为3、6、9、12中的其中之一
小红知道的N值为1、2、4、5、7、8中的其中之一
第一句,排除6月,12月。如果小明拿到6月,12月,小红则有可能知道生日(因为小红拿到7或2就知道了生日,6月7日,12月2日的N是唯一的),小明则不敢100%的肯定说小红不知道。所以小明拿的是3月或9月。
第二句,1、排除2日,7日。据小红说“本来不知道”的话推出;所以小红拿到的只能是1日,4日,5日,8日。老师生日可能是:3月4日 3月5日 3月8日9月1日9月5日
2、排除5日。如果小红拿的5日,则有可能是3月5日或9月5日。小红不敢100%肯定自己知道。所以小红拿到的只能是1日,4日,8日;老师的生日可能是:3月4日 3月8日9月1日
第三句,排除3月。据小明肯定的说自己知道了,只能是9月。如果是3月,则有3月4日 3月8日,他不能根据小红的话说自己知道了。所以老师的生日是:9月1日
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.梅花
2.野梅花
3.草莓
4.杨梅
2.野梅花
3.草莓
4.杨梅
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梅花
野梅花
草莓
杨梅
野梅花
草莓
杨梅
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询