在四边形abcd中,∠abc=90° ,cd⊥ad,ad^2+CD^2=2AB^2 求证(1)ab=bc(2)当be⊥ad于e时,证明be=ae+cd

图急急急立刻马上啊... 图 急急急 立刻马上啊 展开
慕野清流
2012-03-30 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2334万
展开全部
1)证明:连接AC.
∵∠ABC=90°,
∴AB2+BC2=AC2.
∵CD⊥AD,
∴AD2+CD2=AC2.
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2,
∴AB=BC.

(2)证明:过C作CF⊥BE于F.
∵BE⊥AD,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中

∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD
低调控的sky
2012-11-03
知道答主
回答量:79
采纳率:0%
帮助的人:19.7万
展开全部
证明:(1)连接AC.
∵∠ABC=90°,
∴AB2+BC2=AC2.
∵CD⊥AD,
∴AD2+CD2=AC2.
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2,
∴BC2=AB2,
∴AB=BC.

(2)过C作CF⊥BE于F.
∵BE⊥AD,CF⊥BE,CD⊥AD,
∴∠FED=∠CFE=∠D=90°,
∴四边形CDEF是矩形.
∴CD=EF.
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,
∴∠BAE=∠CBF,
∴在△BAE与△CBF中
∴∠AEB=∠BFC∠BAE=∠CBFAB=BC​,
∴△BAE≌△CBF.(AAS)
∴AE=BF.
∴BE=BF+EF=AE+CD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式