计算二次积分 ∫(0到1)dy∫(y到1)sinx/xdx

春风秋月谈W
2012-03-30 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:3005万
展开全部
解:由题意分析知,此二次积分的积分区域是以(0,0)和(1,0)和(1,1)三点为顶点的直角三角形区域
故∫(0,1)dy∫(y,1)(sinx/x)dx=∫(0,1)(sinx/x)dx∫(0,x)dy (变换积分顺序)
=∫(0,1)(sinx/x)[y│(0,x)]dx
=∫(0,1)(sinx/x)(x-0)dx
=∫(0,1)sinxdx
=-cosx│(0,1)
=-cos1+cos0
=1-cos1
百度网友ce8d01c
2012-03-30 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87110
喜欢数学

向TA提问 私信TA
展开全部
交换积分次序得
∫[0,1]dy∫[y,1]sinx/xdx
=∫[0,1]dx∫[x,1]sinx/xdy
=∫[0,1]dxysinx/x[x,1]
=∫[0,1](sinx/x-sinx)dx
∫[0,1]sinx/xdx是一个变异积分啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式