数列{an}的n项和为Sn的前n项和Sn=3n^2-2n,bn=3/an*an+1求{bn}的前n项
2个回答
展开全部
解:
n=1
a1=S1=3-2=1
n≥2
an=Sn-S(n-1)
=[3n²-2n]-[3(n-1)²-2(n-1)]
=6n-5
n=1也满足
所以 an=6n-5
bn=3/[(6n-5)(6n+1)]=(1/2)[1/(6n-5)-1/(6n+1)]
Sn=(1/2)[1-1/7+1/7-1/13+.......+1/(6n-5)-1/(6n+1)]
=(1/2)[1-1/(6n+1)]
=3n/(6n+1)
n=1
a1=S1=3-2=1
n≥2
an=Sn-S(n-1)
=[3n²-2n]-[3(n-1)²-2(n-1)]
=6n-5
n=1也满足
所以 an=6n-5
bn=3/[(6n-5)(6n+1)]=(1/2)[1/(6n-5)-1/(6n+1)]
Sn=(1/2)[1-1/7+1/7-1/13+.......+1/(6n-5)-1/(6n+1)]
=(1/2)[1-1/(6n+1)]
=3n/(6n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询