已知等比数列an满足:a1+a2+a3+a4+a5=3,则a1-a2+a3-a4+a5的值是
1个回答
展开全部
设公比为q,q≠1
∵a1+a2+a3+a4+a5=3
a1²+a2²+a3²+a4²+a5²=12
(a1²,a2²,a3²,a4²,a5² 公比为q²)
∴a1(1-q^5)/(1-q)=3 (1)
a1²(1-q^10)/(1-q^2)=12
==> a1²[(1+q^5)(1-q^5)]/[(1+q)(1-q)] =12 【平方差公式 1-q^10=(1+q^5)(1-q^5)】
==> a1(1+q^5)/(1+q) *a1(1-q^5)/(1-q)=12
==> a1(1+q^5)/(1+q) × 3=12
∴a1(1+q^5)/(1+q) =4
∵a1,-a2,a3,-a4,a5为公比为-q的等比数列
∴a1-a2+a3-a4+a5
=a1[1-(-q)^5]/(1+q)
=a1(1+q^5)/(1+q) =4
∵a1+a2+a3+a4+a5=3
a1²+a2²+a3²+a4²+a5²=12
(a1²,a2²,a3²,a4²,a5² 公比为q²)
∴a1(1-q^5)/(1-q)=3 (1)
a1²(1-q^10)/(1-q^2)=12
==> a1²[(1+q^5)(1-q^5)]/[(1+q)(1-q)] =12 【平方差公式 1-q^10=(1+q^5)(1-q^5)】
==> a1(1+q^5)/(1+q) *a1(1-q^5)/(1-q)=12
==> a1(1+q^5)/(1+q) × 3=12
∴a1(1+q^5)/(1+q) =4
∵a1,-a2,a3,-a4,a5为公比为-q的等比数列
∴a1-a2+a3-a4+a5
=a1[1-(-q)^5]/(1+q)
=a1(1+q^5)/(1+q) =4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询