如图,直线Y=KX+K与双曲线Y=(M-5)/X在第一象限内相交于点M,与X轴交于点A。求M的取值范围和点a的坐标;(2
4个回答
展开全部
解:(1)∵y=在第一象限内,
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=×AB×MC=×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=(m-5)/x得
4=(m-5)/2,
解得m=13,
∴双曲线的函数表达式为 y=8/x.
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=×AB×MC=×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=(m-5)/x得
4=(m-5)/2,
解得m=13,
∴双曲线的函数表达式为 y=8/x.
展开全部
解:(1)∵y=m-5x在第一象限内,
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)∵y=m-5x在第一象限内,
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)∵y=m-5x在第一象限内,
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
∴m-5>0,
解得m>5,
∵直线y=kx+k与x轴相交于点A,
∴令y=0,
则kx+k=0,
即 k(x+1)=0,
∵k≠0,
∴x+1=0,
解得x=-1,
∴点A的坐标(-1,0);
(2)过点M作MC⊥AB于C,
∵点A的坐标(-1,0)点B的坐标为(3,0),
∴AB=4,AO=1,
S△ABM=12×AB×MC=12×4×MC=8,
∴MC=4,
又∵AM=5,
∴AC=3,OA=1,
∴OC=2,
∴点M的坐标(2,4),
把M(2,4)代入y=m-5x得
4=m-52,
解得m=13,
∴y=8x.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询