已知: 如图一所示在△ABC中,∠A>∠B,AE平分∠BAC,F为AE上的一点,且FD⊥BC于D,
则有∠EFD=二分之一(∠C-∠B)问题:1.请你说明理由2.当F在AE延长线上时,如图2所示,其余条件不变,则上述结论还成立吗?为什么?...
则有∠EFD=二分之一(∠C-∠B)问题:1.请你说明理由2.当F在AE延长线上时,如图2所示,其余条件不变,则上述结论还成立吗?为什么?
展开
展开全部
1、证明:
∵∠BAC+∠B+∠C=180
∴∠BAC=180-(∠B+∠C)
∵AE平升物分∠BAC
∴∠BAE=∠BAC/2=90-(∠B+∠C)/2
∴∠AED=∠BAE+∠B=90-(∠B+∠C)/2+∠B=90+(∠B-∠C)/2
∵FD⊥BC
∴∠AED+∠EFD=90
∴∠EFD=90-∠AED=90-90-(∠B-∠C)/2=(∠C-∠B)/2
2、不变
证明:
∵∠BAC+∠B+∠C=180
∴∠BAC=180-(∠B+∠C)
∵AE平分∠吵配液BAC
∴∠BAE=∠BAC/2=90-(∠B+∠C)/2
∴∠AED=∠BAE+∠B=90-(∠B+∠C)/2+∠B=90+(∠B-∠C)/卖或2
∵∠AED与∠DEF为对顶角
∴∠DEF=∠AED=90+(∠B-∠C)/2
∵FD⊥BC
∴∠DEF+∠EFD=90
∴∠EFD=90-∠DEF=90-90-(∠B-∠C)/2=(∠C-∠B)/2
∵∠BAC+∠B+∠C=180
∴∠BAC=180-(∠B+∠C)
∵AE平升物分∠BAC
∴∠BAE=∠BAC/2=90-(∠B+∠C)/2
∴∠AED=∠BAE+∠B=90-(∠B+∠C)/2+∠B=90+(∠B-∠C)/2
∵FD⊥BC
∴∠AED+∠EFD=90
∴∠EFD=90-∠AED=90-90-(∠B-∠C)/2=(∠C-∠B)/2
2、不变
证明:
∵∠BAC+∠B+∠C=180
∴∠BAC=180-(∠B+∠C)
∵AE平分∠吵配液BAC
∴∠BAE=∠BAC/2=90-(∠B+∠C)/2
∴∠AED=∠BAE+∠B=90-(∠B+∠C)/2+∠B=90+(∠B-∠C)/卖或2
∵∠AED与∠DEF为对顶角
∴∠DEF=∠AED=90+(∠B-∠C)/2
∵FD⊥BC
∴∠DEF+∠EFD=90
∴∠EFD=90-∠DEF=90-90-(∠B-∠C)/2=(∠C-∠B)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询