用定义法证明函数f(x)=1+1/x-1在(1,+∞)上是减函数
2个回答
展开全部
设 x1 x2 ∈(1,正无穷) 且 x1>x2
则
f(x1)-f(x2)
=1+1/(x1-1)-1-1/(x2-1)
=1/(x1-1)-1/(x2-1)
=(x2-1-x1+1)/[(x1-1)(x2-1)]
=(x2-x1)/[(x1-1)(x2-1)]
因为 x1>1 x2>1
所以 (x1-1)>0 (x2-1)>0
得 (1-x1)(1-x2)>0
又 x1>x2
所以 x2-x1<0
得
f(x1)-f(x2)<0
所以 f(x1)<f(x2)
得 明函数f(x)=1+1/x-1在(1,+∞)上是减函数
则
f(x1)-f(x2)
=1+1/(x1-1)-1-1/(x2-1)
=1/(x1-1)-1/(x2-1)
=(x2-1-x1+1)/[(x1-1)(x2-1)]
=(x2-x1)/[(x1-1)(x2-1)]
因为 x1>1 x2>1
所以 (x1-1)>0 (x2-1)>0
得 (1-x1)(1-x2)>0
又 x1>x2
所以 x2-x1<0
得
f(x1)-f(x2)<0
所以 f(x1)<f(x2)
得 明函数f(x)=1+1/x-1在(1,+∞)上是减函数
展开全部
设x1,x2∈(1,+∞),且x1<x2
f(x1)-f(x2)=1+1/x1-1 -1-1/x2-1
=1/x1-1 -1/x2-1
=x2-1/(x1-1)(x2-1)-(x1-1)/(x1-1)(x2-1)
=(X2-X1)/(x1-1)(x2-1)
∵ x1<x2
∴x2-x1>0
∴x1-1>0,x2-1>0
∴ f(x1)-f(x2)>0
∴f(x1)>f(x2)
故函数f(x)=1+1/x-1在(1,+∞)上是减函数
f(x1)-f(x2)=1+1/x1-1 -1-1/x2-1
=1/x1-1 -1/x2-1
=x2-1/(x1-1)(x2-1)-(x1-1)/(x1-1)(x2-1)
=(X2-X1)/(x1-1)(x2-1)
∵ x1<x2
∴x2-x1>0
∴x1-1>0,x2-1>0
∴ f(x1)-f(x2)>0
∴f(x1)>f(x2)
故函数f(x)=1+1/x-1在(1,+∞)上是减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询