证明曲面F((x-a)/(-c),(y-b)/(z-c))=0上任一点的切平面通过一定点,其中函数F(u,v)可微,a,b,c为常数

灵魂伴侣_烈焰
2012-04-01 · TA获得超过463个赞
知道小有建树答主
回答量:105
采纳率:100%
帮助的人:128万
展开全部
敢问是不是打错了,应该是F((x-a)/(z-c),(y-b)/(z-c))=0吧
设曲面任意一点(x1,y1,z1)
Fx=F1/(z-c)
Fy=F2/(z-c)
Fz=[(a-x)/(z-c)^2]F1+[(b-y)/(z-c)^2]F2
在该点处的切平面方程为[F1/(z1-c)](x-x1)+[F2/(z1-c)](y-y1)+[(a-x1)/(z-c)^2]F1+[(b-y1)/(z-c)^2]F2(z-z1)=0,
合并同类项得到:
[x-x1+(z-z1)*(a-x1)/(z1-c)]F1/(z1-c)+[y-y1+(z-z1)*(b-y1)/(z1-c)]F2/(z1-c)=0
因为过定点,故令x-x1+(z-z1)*(a-x1)/(z1-c)=0,y-y1+(z-z1)*(b-y1)/(z1-c)=0
很容易得到x=a,y=b,z=c满足.
没有什么太好的办法,请参考.
追问
F(u,v)这样不是表示只有两个未知数吗,z应该是由x,y构成的函数把,也要坐标表示吗
追答
不是,F(u,v)表示的是一种函数关系,F((x-a)/(z-c),(y-b)/(z-c)),确实是三元变量,你可以理解为这f(x,y,z)=0上任意一点的切平面通过一定点,建议你多做一些类似题,可以加深理解的,不过想短期内搞明白,可能不行。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式