
2011年宜宾中考数学24题
展开全部
(1)设抛物线的解析式为y=kx2+a
∵点D(2a,2a)在抛物线上,
4a2k+a = 2a ∴k =
∴抛物线的解析式为y= x2+a
(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GDP中,
由勾股定理得:PD2=DG2+PG2=(y–2a)2+x2 =y2 – 4ay+4a2+x2
∵y= x2+a ∴x2 = 4a (y– a)= 4ay– 4a2
∴PD 2= y2– 4ay+4a2 +4ay– 4a2= y2 =PH2
∴PD = PH
(3)过B点BE ⊥ x轴,AF⊥x轴.
由(2)的结论:BE=DB AF=DA
∵DA=2DB ∴AF=2BE ∴AO = 2BO
∴B是OA的中点,
∴C是OD的中点,
连结BC
∴BC= = = BE = DB
过B作BR⊥y轴,
∵BR⊥CD ∴CR=DR,OR= a + = ,
∴B点的纵坐标是,又点B在抛物线上,
∴ = x2+a ∴x2 =2a2
∵点D(2a,2a)在抛物线上,
4a2k+a = 2a ∴k =
∴抛物线的解析式为y= x2+a
(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GDP中,
由勾股定理得:PD2=DG2+PG2=(y–2a)2+x2 =y2 – 4ay+4a2+x2
∵y= x2+a ∴x2 = 4a (y– a)= 4ay– 4a2
∴PD 2= y2– 4ay+4a2 +4ay– 4a2= y2 =PH2
∴PD = PH
(3)过B点BE ⊥ x轴,AF⊥x轴.
由(2)的结论:BE=DB AF=DA
∵DA=2DB ∴AF=2BE ∴AO = 2BO
∴B是OA的中点,
∴C是OD的中点,
连结BC
∴BC= = = BE = DB
过B作BR⊥y轴,
∵BR⊥CD ∴CR=DR,OR= a + = ,
∴B点的纵坐标是,又点B在抛物线上,
∴ = x2+a ∴x2 =2a2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询