有关圆的知识点总结

鲨鱼星小游戏
高粉答主

2021-06-13 · 最爱分享有趣的游戏日常!
鲨鱼星小游戏
采纳数:2708 获赞数:238457

向TA提问 私信TA
展开全部

1、在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。

2、圆有无数条对称轴。

3、圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

4、圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。

5、圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。

6、在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。

7、圆是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0。

8、圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆,等圆有无数条对称轴。

9、连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)

10、通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。

至善教育米老师
推荐于2017-11-25 · TA获得超过8603个赞
知道小有建树答主
回答量:857
采纳率:33%
帮助的人:274万
展开全部
1、圆是定点的距离等于定长的点的集合
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
2、定理 不在同一直线上的三点确定一个圆。
3、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
4、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
5、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
6、定理 一条弧所对的圆周角等于它所对的圆心角的一半
推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
8、①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
9、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
 切线的性质定理 圆的切线垂直于经过切点的半径
 推论1 经过圆心且垂直于切线的直线必经过切点
 推论2 经过切点且垂直于切线的直线必经过圆心
10、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
  圆的外切四边形的两组对边的和相等
11、①两圆外离 d>R+r ②两圆外切 d=R+r
  ③两圆相交 R-r<d<R+r(R>r)
  ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
12、定理 相交两圆的连心线垂直平分两圆的公共弦
13、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
14、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
144弧长计算公式:L=nπR/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-01-29
展开全部
1、圆的周长=圆周率×直径/圆周率×2×π C=πd/C=2πr
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夜雨冰之恋30
2012-10-05 · TA获得超过673个赞
知道答主
回答量:62
采纳率:0%
帮助的人:28万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
JZC_小艾
2020-08-02
知道答主
回答量:14
采纳率:0%
帮助的人:5078
展开全部
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式