
2个回答
展开全部
证明:过点A作AD⊥BC于D
∵AD⊥BC
∴AB²-BD²=AD²,AP²-PD²=AD²
∴AB²-BD²=AP²-PD²
∴AB²=AP²+BD²-PD²
∴AB²=AP²+(BD+PD)(BD-PD)
∵AB=AC,AD⊥BC
∴CD=BD (等腰三角形三线合一:中线、角平分线、高)
∴BD+PD=CD+PD=CP,BD-PD=BP
∴AC²=AP²+CP*BP
∵AD⊥BC
∴AB²-BD²=AD²,AP²-PD²=AD²
∴AB²-BD²=AP²-PD²
∴AB²=AP²+BD²-PD²
∴AB²=AP²+(BD+PD)(BD-PD)
∵AB=AC,AD⊥BC
∴CD=BD (等腰三角形三线合一:中线、角平分线、高)
∴BD+PD=CD+PD=CP,BD-PD=BP
∴AC²=AP²+CP*BP
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询