已知如图,菱形ABCD中,且∠A=60°,点E,F分别在边AB,BC上,且∠EDF=60°,求证:DE=DF
展开全部
考点:菱形的性质.
分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;
(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.
解答:解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;(4分)
(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2(6分),
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.(8分)
点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.
分析:(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;
(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.
解答:解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD为等边三角形,
∴∠ABD=60°;(4分)
(2)由(1)可知BD=AB=4,
又∵O为BD的中点,
∴OB=2(6分),
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.(8分)
点评:本题利用等边三角形的判定和直角三角形30°角所对的直角边等于斜边的一半求解,需要熟练掌握.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连BD、证明三角形ADE、BDF全等,AD=BD,角A=角DBF=60°,角ADE=角BDF,则DE=DF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询