在锐角三角形ABC中,角A,B,C的对边分别为a,b,c且B=π/3,求2sin^2A+cos(A-C)的取值范围

本草纲日
2012-04-02 · TA获得超过1.4万个赞
知道小有建树答主
回答量:756
采纳率:100%
帮助的人:411万
展开全部
A-C=A-(2π/3-A)=2A-2π/3
cos(A-C)=cos(2A-2π/3)=√3/2 * sin2A - 1/2 * cos2A
2sin^2(A)=1-cos2A
所以2sin^2A+cos(A-C)
=√3/2 * sin2A - 3/2 * cos2A + 1
=√3* sin(2A-π/3)+1
又因为锐角三角形,所以A只能在(30度,90度)之间(开区间)
那么当A趋近30度时有最小值1,但是取不到
当A为75度时有最大值√3+1,可取到
所以取值范围(1,√3+1]
注意区间开闭
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式