先化简,再求值:1/(a+1)-(a+3)/(a^2-1)*(a^2-2a+1)/(a^2+4a+3),其中a满足a^2+2a-1=0
展开全部
1/(a+1)-[(a+3)/(a^2-1)]*[(a^2-2a+1)/(a^2+4a+3)]
=1/(a+1)-[(a+3)(a-1)^2]/[(a+1)^2(a-1)(a+3)]
=1/(a+1)-(a-1)/(a+1)^2
=(a+1)/(a+1)^2-(a-1)/(a+1)^2
=[(a+1)-(a-1)]/(a+1)^2
=2/(a+1)^2
又a^2+2a-1=0
a^2+2a+1=2
(a+1)^2=2
所以原式=2/(a+1)^2=2/2=1
=1/(a+1)-[(a+3)(a-1)^2]/[(a+1)^2(a-1)(a+3)]
=1/(a+1)-(a-1)/(a+1)^2
=(a+1)/(a+1)^2-(a-1)/(a+1)^2
=[(a+1)-(a-1)]/(a+1)^2
=2/(a+1)^2
又a^2+2a-1=0
a^2+2a+1=2
(a+1)^2=2
所以原式=2/(a+1)^2=2/2=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询