如图(1),等边△ABC内有一点P若点P到顶点A,B,C,的距离分别为3,4,5…

等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=__________,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A... 等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=__________,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌__________这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF²=BE²+FC². 展开
 我来答
xx_余温
2013-04-11 · TA获得超过1403个赞
知道答主
回答量:223
采纳率:0%
帮助的人:68.3万
展开全部
解:(1)将△ABP绕顶点A旋转到△ACP′处,
∴△BAP≌△CAP′,
∴AB=AC,AP=AP′,∠BAP=∠CAP′,
∴∠BAC=∠PAP′=60°,
∴△APP′是等边三角形,
∴∠APP′=60°,
因为B P P′不一定在一条直线上
连接PC,
∴P′C=PB=4,PP′=PA=3,PC=5,
∴∠PP′C=90°,
∴△PP′C是直角三角形,
∴∠APB=∠AP′C=150°,
∴∠BPA=150°;
故答案是:150°,△ABP;

(2)把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.
则△ACF≌△ABG.
∴AG=AF,BG=CF,∠ABG=∠ACF=45°.
∵∠BAC=90°,∠GAF=90°.
∴∠GAE=∠EAF=45°,
在△AEG和△AFE中,
∵ AG=AF∠GAE=∠FAEAE=AE
∴△AEG≌△AFE.
∴EF=EG,
又∵∠GBE=90°,
∴BE2+BG2=EG2,
即BE2+CF2=EF2.
mr_shen_1989
2012-04-02
知道答主
回答量:33
采纳率:0%
帮助的人:23.4万
展开全部
PA、PB都共P点,为什么不在一个三角形中
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
a1215105838
2012-04-03
知道答主
回答量:2
采纳率:0%
帮助的人:3262
展开全部
150度 △ABP
追问
没过程?。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式