复合函数的求导法则怎么证明?

 我来答
结局都与你我有关
推荐于2017-09-11 · TA获得超过5.8万个赞
知道大有可为答主
回答量:3.5万
采纳率:97%
帮助的人:2795万
展开全部
复合函数的求导法则证明:
例如:要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。
首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其实就是y=g(x),k=[g'(x) + v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看。
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。
胖友
2018-03-30 · TA获得超过4077个赞
知道小有建树答主
回答量:55
采纳率:88%
帮助的人:1.4万
展开全部

复合函数的求导法则证明:

例如:要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。

首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0

设v=(g(x+h)-g(x))/h-g'(x)

就有:g(x+h)=g(x)+(g'(x)+v)h

同理:f(y+k)=f(y)+(f'(y)+u)k

所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其实就是y=g(x),k=[g'(x) + v]h)

所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h

=[f'(g(x))+u]·[g'(x)+v]

当h->0时,u和v都->0,这个容易看。

所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]

=f'(g(x))·g'(x)

然后f'(g(x))=f'(g(x))·g'(x)

证毕

不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。

微积分课本里面有详细的证明过程:

对于y=f[g(x)], 设u=g(x),则可以得到y=f(u),对其两边求导后得到,dy/du=f'(u)-----(1).

同样的,对于u=g(x),可以得到du/dx=g'(x)------(2)

(1),(2)相乘得到dy/dx=f'(u)g'(x)

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bert250
2012-04-06 · 超过13用户采纳过TA的回答
知道答主
回答量:51
采纳率:0%
帮助的人:36.8万
展开全部
微积分课本里面有详细的证明过程。
对于y=f[g(x)], 设u=g(x),则可以得到y=f(u),对其两边求导后得到,dy/du=f'(u)-----(1).
同样的,对于u=g(x),可以得到du/dx=g'(x)------(2)
(1),(2)相乘得到dy/dx=f'(u)g'(x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
球探报告
2020-02-16 · TA获得超过2702个赞
知道小有建树答主
回答量:621
采纳率:91%
帮助的人:38.7万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式