展开全部
证明:
当n=1时,1/2 + 1/3 +1/4=13/12>1,结论成立。
令An=1/(n+1)+1/(n+2)+....+1/(3n+1)
假设当n=k时结论成立,即
Ak=1/(k+1)+1/(k+2)+…+1/(3k+1)>1
我们来证明n=k+1时,结论也成立
因为
A(k+1)=1/(k+2)+1/(k+3)+…+1/(3k+4)
=[1/(k+1)+1/(k+2)+…+1/(3k+1)]+1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
=Ak +1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
下面我们来证明1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)>0 ①
①式可化左端可化为
1/(3k+3-1)+1/(3k+3)+1/(3k+3+1)-3/(3k+3)
=1/(3k+3-1)+1/(3k+3+1)-2/(3k+3) ②
令a=3k+3
若1/(a-1) +1/(a+1)>2/a (其中a>1) 成立
则②>0
1/(a-1) +1/(a+1)=2a/(a²-1)>2a/a²=2/a
这样1/(a-1) +1/(a+1)>2/a成立,从而②式大于0,即①式成立,从而
A(k+1)>Ak>1
当n=1时,1/2 + 1/3 +1/4=13/12>1,结论成立。
令An=1/(n+1)+1/(n+2)+....+1/(3n+1)
假设当n=k时结论成立,即
Ak=1/(k+1)+1/(k+2)+…+1/(3k+1)>1
我们来证明n=k+1时,结论也成立
因为
A(k+1)=1/(k+2)+1/(k+3)+…+1/(3k+4)
=[1/(k+1)+1/(k+2)+…+1/(3k+1)]+1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
=Ak +1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)
下面我们来证明1/(3k+2)+1/(3k+3)+1/(3k+4)-1/(k+1)>0 ①
①式可化左端可化为
1/(3k+3-1)+1/(3k+3)+1/(3k+3+1)-3/(3k+3)
=1/(3k+3-1)+1/(3k+3+1)-2/(3k+3) ②
令a=3k+3
若1/(a-1) +1/(a+1)>2/a (其中a>1) 成立
则②>0
1/(a-1) +1/(a+1)=2a/(a²-1)>2a/a²=2/a
这样1/(a-1) +1/(a+1)>2/a成立,从而②式大于0,即①式成立,从而
A(k+1)>Ak>1
展开全部
n=1时,左边=1/2+1/3+1/4=6/12+4/12+3/12=13/12>1
设n=k时成立,即:1/(k+1)+1/(k+2)+....+1/(3k+1)≥1 ,则
n=k+1时,原式左边为:1/(k+2)+1/(k+3)+....+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(k+1)+1/(k+2)+....+1/(3k+1)-1/(k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)-3/(3k+3)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+1/(3k+2)+1/(3k+4)-2/(3k+3)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+(1/(3k+2)-1/(3k+3)-(1/(3k+3)-1/(3k+4))
显然后面部分是大于0的,故原式得证
设n=k时成立,即:1/(k+1)+1/(k+2)+....+1/(3k+1)≥1 ,则
n=k+1时,原式左边为:1/(k+2)+1/(k+3)+....+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(k+1)+1/(k+2)+....+1/(3k+1)-1/(k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+1/(3k+2)+1/(3k+3)+1/(3k+4)-3/(3k+3)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+1/(3k+2)+1/(3k+4)-2/(3k+3)
=1/(k+1)+1/(k+2)+....+1/(3k+1)+(1/(3k+2)-1/(3k+3)-(1/(3k+3)-1/(3k+4))
显然后面部分是大于0的,故原式得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询