数列求和:Sn=1/2^2-1+1/3^2-1+1/4^2-1+.....+1/n^2-1 麻烦各位帮忙解一下...急用
展开全部
Sn=1/2^2 - 1 + 1/3^2 - 1 + 1/4^2 - 1 +..... + 1/n^2 - 1
=1/(2 - 1)(2 + 1) + 1/(3 - 1)(3 + 1) + ...... + 1/(n - 1)(n + 1)
=1/(1 * 3) + 1/(2 * 4) + ...... + 1/(n - 1)(n + 1)
=1/2[1/1 - 1/3 + 1/2 - 1/4 + ...... + 1/(n - 1)(n + 1)]
=1/2[1 + 1/2 - 1/n - 1/(n + 1)]
=3/4 - 1/(2n) - 1/(2n + 2)
=1/(2 - 1)(2 + 1) + 1/(3 - 1)(3 + 1) + ...... + 1/(n - 1)(n + 1)
=1/(1 * 3) + 1/(2 * 4) + ...... + 1/(n - 1)(n + 1)
=1/2[1/1 - 1/3 + 1/2 - 1/4 + ...... + 1/(n - 1)(n + 1)]
=1/2[1 + 1/2 - 1/n - 1/(n + 1)]
=3/4 - 1/(2n) - 1/(2n + 2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询