函数y=2x^3-3x^2-12x+5在[0,3]上的最大值与最小值分别是

zhiqi329
2012-04-03 · TA获得超过980个赞
知道答主
回答量:41
采纳率:0%
帮助的人:19.3万
展开全部
求最大值最小值,首先要对函数求导,根据导函数的正负,判断原函数的增减
导函数为0的点,为原函数的极值
f(x) = 2x^3 - 3x^2 - 12x + 5
则:f'(x) = 6x^2 -6x - 12
设f'(x) = 0 ,求得x = -1 或 x = 2
-1<x<2时,f'(x) < 0 f(x)为减函数
3>x>2时,f'(x)>0 f(x)为增函数
所以 x=2 时,f(x)为最小值 代入求得 f(2) = -15
f(0) = 5
f(3) = -4
f(0)>f(3) 所以f(0)为最大值, 最大值为 5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式