已知在三角形ABC中,SinA(SinB+CosB) - SinC=0,SinB+Cos2C=0 求角A,B,C的大小.
展开全部
解:∵SinA(SinB+CosB) - SinC=0
C=π-﹙A+B﹚
∴SinA(SinB+CosB)-sin﹙A+B﹚=0
∴SinASinB+sinACosB-sinAcosB-cosAsinB=0
∴SinASinB-cosAsinB=0
∴sinB﹙sinA-cosA﹚=0
∵B≠0
∴sinA-cosA=0
∴A=π/4
∵SinB+Cos2C=0 ,2C=2π-2﹙A+B﹚
sinB+cos2﹙A+B﹚=0
∴sinB+cos2Acos2B-sin2Asin2B=0
∴sinB-sin2B=0
∴sinB-2sinBcosB=0
sinB﹙1-2cosB﹚=0
∴cosB=1/2
∴B=π/3
∴C=π-π/4-π/3
=5π/12
C=π-﹙A+B﹚
∴SinA(SinB+CosB)-sin﹙A+B﹚=0
∴SinASinB+sinACosB-sinAcosB-cosAsinB=0
∴SinASinB-cosAsinB=0
∴sinB﹙sinA-cosA﹚=0
∵B≠0
∴sinA-cosA=0
∴A=π/4
∵SinB+Cos2C=0 ,2C=2π-2﹙A+B﹚
sinB+cos2﹙A+B﹚=0
∴sinB+cos2Acos2B-sin2Asin2B=0
∴sinB-sin2B=0
∴sinB-2sinBcosB=0
sinB﹙1-2cosB﹚=0
∴cosB=1/2
∴B=π/3
∴C=π-π/4-π/3
=5π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询