如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证BE‖FD
3个回答
2012-04-04
展开全部
证明:
∵∠A=∠C=90°
∴∠ABC+∠ADC=180°,∠ADF+∠AFD=90°
∵BE平分∠ABC,DF平分∠ADC
∴∠ADF+∠EBF=90°
∴∠AFD=∠EBF
∴BE∥FD
∵∠A=∠C=90°
∴∠ABC+∠ADC=180°,∠ADF+∠AFD=90°
∵BE平分∠ABC,DF平分∠ADC
∴∠ADF+∠EBF=90°
∴∠AFD=∠EBF
∴BE∥FD
展开全部
BE平分∠ABC,DF平分∠ADC,∠ABC+∠ADC=180度.,∠EBC+∠BEC=90度,∠EBC+∠FDC=90度,,∠FDC=∠BEC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
∵∠A+∠ABC+∠C+∠ADC=360º【四边形内角和360º】
∠A=∠C=90º
∴∠ABC+∠ADC=180º
∵DF平分∠ADC
∴∠CDF=½∠ADC=½(180º-∠ABC)=90º-½∠ABC
∵BE平分∠ABC
∴∠CBE=½∠ABC
∵∠CEB=90º-∠CBE=90º-½∠ABC
∴∠CEB=∠CDF
∴BE//FD
∵∠A+∠ABC+∠C+∠ADC=360º【四边形内角和360º】
∠A=∠C=90º
∴∠ABC+∠ADC=180º
∵DF平分∠ADC
∴∠CDF=½∠ADC=½(180º-∠ABC)=90º-½∠ABC
∵BE平分∠ABC
∴∠CBE=½∠ABC
∵∠CEB=90º-∠CBE=90º-½∠ABC
∴∠CEB=∠CDF
∴BE//FD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询