若圆x²+y²-4x-4y+10=0上至少有三个不同点到直线l:ax+by=0的距离为2√2,则直线l的斜率取值为

魔力猫12
2012-04-04 · TA获得超过617个赞
知道答主
回答量:88
采纳率:0%
帮助的人:101万
展开全部
解:圆x2+y2-4x-4y-10=0整理为 (x-2)2+(y-2)2=(32)2,
∴圆心坐标为(2,2),半径为32,
要求圆上至少有三个不同的点到直线l:ax+by=0的距离为22,
则圆心到直线的距离应小于等于2,
∴|2a+2b|/a2+b2≤2,
∴(a/b)2+4(a/b)+1≤0,
∴-2-3≤a/b≤-2+3,又k=-a/b,
∴2-3≤k≤2+3,
则直线l的斜率的取值区间为[2-3,2+3].
故答案为:[2-3,2+3]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式