数学十大定理 30
3个回答
展开全部
1。人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~
1不等式定律:
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
2。人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。
3。人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。
4。人和命运的关系就像F(x)=x与G(x)=x^2的关系。一开始,你以为命运是你的无穷小量。随着年龄的增长,你才发现你用尽全力也赶不上命运的步伐。这时候,若不是以一种卑微的姿态走下去,便是结束自己的生命。
5。零点存在定理告诉我们,哪怕你和他站在对立面,只要你们的心还是连续的,你们就能找到你们的平衡点。
6。人生是一个级数,理想是你渴望收敛到的那个值。不必太在意,因为我们要认识到有限的人生刻画不出无穷的级数,收敛也只是一个梦想罢了。不如脚踏实地,经营好每一天吧。
7。有限覆盖定理告诉我们,一件事情如果是可以实现的,那么你只要投入有限的时间和精力就一定可以实现。至于那些在你能力范围之外的事情,就随他去吧。
8。痛苦的回忆是可以缩小的,但不可能消亡。区间套最后套出的那一个点在整个区间上微不足道,但一定是存在的,而且刻骨铭心。
9。我们曾有多少的理想和承诺,在经历几次求导的考验之后就面目全非甚至荡然无存?有没有那么一个誓言,叫做f(x)=e^x?
10。幸福是可积的,有限的间断点并不影响它的积累。所以,乐观地面对人生吧~
1不等式定律:
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
2012-04-04
展开全部
1不等式定律:
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
3两+1两>2两+2两>4两
2衰减指数定律:
食堂装修后开张和新学期开始后,饭菜质量和份量呈指数形式衰减。
3多功能定律:
食堂不仅具有普通食堂的功能,它还具有小卖部,录像厅,自习室,还有陪心情不爽的同学叫板等多种功能。
4拉面拉抻次数定律:
每个拉面师傅在拉面时的拉抻次数永远是恒定的,习惯是很难更改的。(以6食堂为例,拉面永远是拉七次下锅:拉面平均长度的均值为0.5米*2的7次方=64米)
5 免费汤定律:
因为根据分子的不规则运动,所以从理论上讲,如果用一缸水煮上一颗红豆,那么这就不再是一缸水,而是一缸能消暑的免费汤。
6互补定律:
打饭师傅的发福程度与打给你饭菜的份量互补,打给你饭菜的质量与份量互补,(例如,如果给你的牛肉很多,一定是嚼不动的,如果给你饭很多,一定是夹生的,如果给你菜很多,一定难以下咽)
7 唯一性定律:
如果食堂的师傅给你的饭菜足够质量和份量,而且你又不是很pp,那么一定是膳食大检查的人员在食堂里。
8随机性定律:
无论是经济快餐,汤煲,还是特色炒菜都有随机出现铁丝,头发,苍蝇,石头,蜈蚣或别的令你胃口全无的可能性,随机率不可预计。
9 随机性定律推论:
我们仅仅从食物中随机出现的杂物,就推断出食堂大师傅的一些特点:师傅大多是经常脱发,用金属铁丝洗碗,而且非常喜欢昆虫和树叶的标本。
10 相对论定律:
如果你感觉勺子筷子或者餐具不干净,请你闭上眼睛,心里默念“这是经过红外线消过毒的!”然后就干净了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数
十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式
综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形
恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式
含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
含绝对值的一元一次不等式。
简单的一次不定方程。
列方程(组)解应用题。
5、函数
y=|ax+b|,y=|ax2+bx+c|及y=ax2+bx+c的图像和性质。
二次函数在给定区间上的最值。简单分式函数的最值,含字母系数的二次函数。
6、逻辑推理问题
抽屉原则(概念),分割图形造抽屉、按同余类造抽屉、利用染色造抽屉。
简单的组合问题。
逻辑推理问题,反证法。
简单的极端原理。
简单的枚举法。
7、几何
四种命题及其关系。
三角形的不等关系。同一个三角形中的边角不等关系,不同三角形中的边角不等关系。
面积及等积变换。
三角形的心(内心、外心、垂心、重心)及其性质。
高中数学竞赛大纲(修订稿)
〔作者:佚名转贴自:中国基础教育网
在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
一试
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试
1、平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2、代数
在一试大纲的基础上另外要求的内容:
周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3、立体几何
多面角,多面角的性质。三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何
直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它
抽屉原理。
容斤原理。
极端原理。
集合的划分。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数
十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式
综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形
恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式
含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
含绝对值的一元一次不等式。
简单的一次不定方程。
列方程(组)解应用题。
5、函数
y=|ax+b|,y=|ax2+bx+c|及y=ax2+bx+c的图像和性质。
二次函数在给定区间上的最值。简单分式函数的最值,含字母系数的二次函数。
6、逻辑推理问题
抽屉原则(概念),分割图形造抽屉、按同余类造抽屉、利用染色造抽屉。
简单的组合问题。
逻辑推理问题,反证法。
简单的极端原理。
简单的枚举法。
7、几何
四种命题及其关系。
三角形的不等关系。同一个三角形中的边角不等关系,不同三角形中的边角不等关系。
面积及等积变换。
三角形的心(内心、外心、垂心、重心)及其性质。
高中数学竞赛大纲(修订稿)
〔作者:佚名转贴自:中国基础教育网
在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。而“课堂教学为主,课外活动为辅”是必须遵循的原则。因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
一试
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试
1、平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
2、代数
在一试大纲的基础上另外要求的内容:
周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
n个变元的平均不等式,柯西不等式,排序不等式及应用。
复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
3、立体几何
多面角,多面角的性质。三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何
直线的法线式,直线的极坐标方程,直线束及其应用。
二元一次不等式表示的区域。
三角形的面积公式。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它
抽屉原理。
容斤原理。
极端原理。
集合的划分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |